Skip to main content
Log in

Mesoporous epoxidized soybean oil-supported copper-based magnetic nanocatalyst and amberlite-supported azide as a green and efficient catalytic system for 1,2,3-triazole synthesis

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A new green mesoporous magnetically heterogeneous catalyst was prepared by the copper immobilization onto magnetic epoxidized soybean oil as a nano bio-support and was utilized for the synthesis of 1,4-disubstituted-1,2,3-triazole derivatives in the presence of amberlite supported azide. A great range of triazole derivatives were synthesized from benzyl halides or epoxides halides in high yields at the room temperature. The catalyst was characterized by various techniques such as FT-IR, XRD, VSM, FE-SEM, EDX, TEM, BET, TGA, and ICP analysis. This catalytic system can be reused for five times without any significant decrease in the catalytic activity.

Graphical abstract

Fe3O4@SiO-ESBO/CuO nanocatalyst and amberlite supported azide as a green catalytic system has been used for the regioselective synthesis of triazole derivatives in water. A large range of triazole derivatives were synthesized from benzyl halides or epoxides in high yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mokariya JA, Kalola AG, Prasad P, Patel MP (2021) Simultaneous ultrasound- and microwave-assisted one-pot ‘click’ synthesis of 3-formyl-indole clubbed 1,2,3-triazole derivatives and their biological evaluation. Mol Divers. https://doi.org/10.1007/s11030-021-10212-8

    Article  Google Scholar 

  2. Siddiqui H, Baheej MAA, Ullah S, Rizvi F, Iqbal S, Haniffa HM, Wahab AT, Choudhary MI (2021) Synthesis of 1,2,3, triazole modified analogues of hydrochlorothiazide via click chemistry approach and in-vitro α-glucosidase enzyme inhibition studies. Mol Divers. https://doi.org/10.1007/s11030-021-10314-3

    Article  Google Scholar 

  3. Rezaei F, Amrollahi A, Khalifeh R (2019) Design and synthesis of Fe3O4@SiO2/aza-crown ether-Cu(II) as a novel and highly efficient magnetic nanocomposite catalyst for the synthesis of 1,2,3-triazoles, 1-substituted 1H-tetrazoles and 5-substituted 1H-tetrazoles in green solvents. Inorg Chim Acta 489:8–18. https://doi.org/10.1016/j.ica.2019.01.039

    Article  CAS  Google Scholar 

  4. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Chem Int Ed 41:2596–2599. https://doi.org/10.1002/1521-3773(20020715)41:14%3c2596::AID-ANIE2596%3e3.0.CO;2-4

    Article  CAS  Google Scholar 

  5. Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064. https://doi.org/10.1021/jo011148j

    Article  CAS  Google Scholar 

  6. Tajbakhsh M, Farhang M, Baghbanian SM, Hosseinzadeh R, Tajbakhsh M (2015) Copper(II) accelerated azide–alkyne cycloaddition reaction using mercaptopyridine-based triazole ligands. New J Chem 39:1827. https://doi.org/10.1039/C4NJ01866D

    Article  CAS  Google Scholar 

  7. Varela Palma J, González J, Lopez Téllez G, Basavanag Unnamatla MV, García Eleno MA, Cuevas Yañez E (2021) Synthesis of 1,2,3-triazoles from alkyne-azide cycloaddition catalyzed by a bio-reduced alkynyl copper (I) complex. Chem Proc 3:54–60. https://doi.org/10.3390/ecsoc-24-08384

    Article  Google Scholar 

  8. Pourmohammad N, Heravi MM, Ahmadi S, Hosseinnejad T (2019) In situ preparation and characterization of novel CuI-functionalized poly[(methyl methacrylate)-co-maleimide] as an efficient heterogeneous catalyst in the regioselective synthesis of 1,2,3-triazoles via click reaction: experimental and computational chemistry. Appl Organometal Chem 33:4967. https://doi.org/10.1002/aoc.4967

    Article  CAS  Google Scholar 

  9. Albadi J, Keshavarz M, Shirini F, Vafaienezhad M (2012) Copper iodide nanoparticles on poly (4-vinyl pyridine): a new and efficient catalyst for multicomponent click synthesis of 1,4-disubstituted-1,2,3-triazoles in water. Catal Commun 27:17–20. https://doi.org/10.1016/j.catcom.2012.05.023

    Article  CAS  Google Scholar 

  10. Sharma C, Kaur M, Choudhary A, Sharma S, Paul S (2020) Nitrogen doped carbon–silica based Cu(0) nanometal catalyst enriched with well-defined N-moieties: synthesis and application in one-pot synthesis of 1,4-disubstituted-1,2,3-triazoles. Catal Lett 150:82–94. https://doi.org/10.1007/s10562-019-02936-y

    Article  CAS  Google Scholar 

  11. Albadi J, Shiran JA, Mansournezhad A (2014) Click synthesis of 1,4-disubstituted-1,2,3-triazoles catalysed by CuO-CeO2 nanocomposite in the presence of amberlite-supported azide. J Chem Sci 126:147–150. https://doi.org/10.1002/CHIN.201439157

    Article  CAS  Google Scholar 

  12. Li P, Wang L, Zhang Y (2008) SiO2–NHC–Cu(I): an efficient and reusable catalyst for [3+2] cycloaddition of organic azides and terminal alkynes under solvent-free reaction conditions at room temperature. Tetrahedron 64:10825–10830. https://doi.org/10.1016/j.tet.2008.09.021

    Article  CAS  Google Scholar 

  13. Jlalia I, Beauvineau C, Beauviere S, Ӧnen E, Aufort M, Beauvineau A, Khaba E, Herscovici J, Meganem F, Girard C (2010) Automated synthesis of a 96 product-sized library of triazole derivatives using a solid phase supported copper catalyst. Molecules 15:3087–3120. https://doi.org/10.3390/molecules15053087

    Article  CAS  Google Scholar 

  14. Khodaei MM, Bahrami K, Sadat Meibodi F (2017) Ferromagnetic nanoparticle-supported copper complex: a highly efficient and reusable catalyst for three-component syntheses of 1,4-disubstituted 1,2,3-triazoles and C-S coupling of aryl halides. Appl Organometal Chem 31:3714. https://doi.org/10.1002/aoc.3714

    Article  CAS  Google Scholar 

  15. Hudson R, Li CJ, Moores A (2012) Magnetic copper–iron nanoparticles as simple heterogeneous catalysts for the azide–alkyne click reaction in water. Green Chem 14:622. https://doi.org/10.1039/C2GC16421C

    Article  CAS  Google Scholar 

  16. Radatz CS, Soares LdA, Vieira ER, Alves D, Russowsky D, Schneider PH (2014) Recoverable Cu/SiO2 composite-catalysed click synthesis of 1,2,3-triazoles in water media. New J Chem 38:1410. https://doi.org/10.1039/C3NJ01167D

    Article  CAS  Google Scholar 

  17. Karimi Zarchi MA, Nazem F (2014) One-pot three-component synthesis of 1,4-disubstituted 1H–1,2,3-triazoles using green and recyclable cross-linked poly(4-vinylpyridine)-supported copper sulfate/sodium ascorbate in water/t-BuOH system. J Iran Chem Soc 11:1731–1742. https://doi.org/10.1007/s13738-014-0446-2

    Article  CAS  Google Scholar 

  18. Rajabi M, Albadi J, Momeni AR (2020) Click synthesis of 1,4-disubstituted-1,2,3-triazoles catalyzed by melamine-supported CuO nanoparticles as an efficient recyclable catalyst in water. Res Chem Intermed 46:3879–3889. https://doi.org/10.1007/s11164-020-04178-9

    Article  CAS  Google Scholar 

  19. Jafari AA, Mahmoudi H, Firouzabadi H (2015) A copper acetate/2-aminobenzenthiol complex supported on magnetite/silica nanoparticles as a highly active and recyclable catalyst for 1,2,3-triazole synthesis. RSC Adv 5:107474–107481. https://doi.org/10.1039/C5RA22909J

    Article  CAS  Google Scholar 

  20. Xiong XQ, Chen H, Tang ZK, Jiang YB (2014) Supported CuBr on graphene oxide/Fe3O4: a highly efficient, magnetically separable catalyst for the multi-gram scale synthesis of 1,2,3-triazoles. RSC Adv 4:9830–9837. https://doi.org/10.1039/c3ra45994b

    Article  CAS  Google Scholar 

  21. Sardarian AR, Mohammad F, Esmaeilpour M (2019) Dendrimer-encapsulated copper(II) immobilized on Fe3O4@SiO2 NPs: a robust recoverable catalyst for click synthesis of 1,2,3-triazole derivatives in water under mild conditions. Res Chem Intermed 45:1437–1456. https://doi.org/10.1007/s11164-018-3672-x

    Article  CAS  Google Scholar 

  22. Burda C, Chen X, NarayanaEI-Sayed RMA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. https://doi.org/10.1021/cr030063a

    Article  CAS  Google Scholar 

  23. Salamatmanesh A, Kazemi Miraki M, Yazdani E, Heydari A (2018) Copper(I)–caffeine complex immobilized on silica-coated magnetite nanoparticles: a recyclable and eco-friendly catalyst for click chemistry from organic halides and epoxides. Catal Lett 148:3257–3268. https://doi.org/10.1007/s10562-018-2523-0

    Article  CAS  Google Scholar 

  24. Elnagdy HM, Gogoi K, Ali AA, Sarma D (2018) Claycop/hydrazine: a new and highly efficient recyclable/reusable catalytic system for 1,4-disubstituted-1,2,3-triazole synthesis under solvent-free conditions. Appl Organomet Chem 32:3931–3935. https://doi.org/10.1002/aoc.3931

    Article  CAS  Google Scholar 

  25. Lipshutz BH, Taft BR (2006) Heterogeneous copper-in-charcoal-catalyzed click chemistry. Angew Chem Int Ed 45:8235–8238. https://doi.org/10.1002/anie.200603726

    Article  CAS  Google Scholar 

  26. Hamzavi SF, Gerivani S, Saeedi S, Naghdipari K, Shahverdizadeh G (2019) Preparation and characterization of a novel spherical cellulose–copper(II) oxide composite particles: as a heterogeneous catalyst for the click reaction. Mol Divers 24:201–209. https://doi.org/10.1007/s11030-019-09942-7

    Article  CAS  Google Scholar 

  27. Cheng QY, An XP, Li YD, Huang CL, Zeng JB (2017) Sustainable and biodegradable superhydrophobic coating from epoxidized soybean oil and ZnO nanoparticles on cellulosic substrates for efficient oil/water separation. ACS Sustain Chem Eng 5:11440–11450. https://doi.org/10.1021/acssuschemeng.7b02549

    Article  CAS  Google Scholar 

  28. Chintareddy VR, Oshel RE, Doll KM, Yu Z, Wu W, Zhang G, Verkade JG (2012) Investigation of conjugated soybean oil as drying oils and CLA sources. J Am Oil Chem Soc 89:1749–1762. https://doi.org/10.1007/S11746-012-2072-4

    Article  CAS  Google Scholar 

  29. Lee KW, Hailan C, Yinhua J, Kim YW, Chung KW (2008) Modification of soybean oil for intermediates by epoxidation. J Chem Eng 25:474–482. https://doi.org/10.1007/s11814-008-0081-7

    Article  CAS  Google Scholar 

  30. Bueno-Ferrer C, Garrigós MC, Jimenz A (2010) Characterization and thermal stability of poly(vinyl chloride) plasticized with epoxidized soybean oil for food packaging. Polym Degrad Stab 95:2207–2212. https://doi.org/10.1016/j.polymdegradstab.2010.01.027

    Article  CAS  Google Scholar 

  31. Wang Z, Guo H, Yu Y, He N (2006) Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction. J Magn Magn Mater 302:397–404. https://doi.org/10.1016/j.jmmm.2005.09.044

    Article  CAS  Google Scholar 

  32. Keshavarz M, Iravani N, Ghaedi A, Zarei Ahmady A, Vafaei-Nezhad M, Karimi S (2013) Macroporous polymer supported azide and nanocopper (I): efficient and reusable reagent and catalyst for multicomponent click synthesis of 1,4-disubstituted-1H-1,2,3-triazoles from benzyl halides. Springerplus 2:64. https://doi.org/10.1186/2193-1801-2-64

    Article  CAS  Google Scholar 

  33. Janković M, Sinadinović-Fišer S, Govedarica O, Pavličević J, Budinski-Simendić J (2017) Kinetics of soybean oil epoxidation with peracetic acid formed in situ in the presence of an ion exchange resin: pseudo-homogeneous model. Chem Ind Chem Eng Q 23:97–111. https://doi.org/10.2298/CICEQ150702014J

    Article  Google Scholar 

  34. Tan LS, Xu J, Xue XQ, Lou ZM, Zhu J, Baig SA, Xu XH (2014) Multifunctional nanocomposite Fe3O4@SiO2–mPD/SP for selective removal of Pb(II) and Cr(VI) from aqueous solutions. RSC Adv 4:45920–45929. https://doi.org/10.1039/C4RA08040H

    Article  CAS  Google Scholar 

  35. Chandra G, Reddy S, Hu Y (2017) Efficient chemical transformations of epoxidized soybean oil to cross-linked polymers by phosphorus-containing nucleophiles and study their thermal properties. Polym Degrad Stab 140:156–165. https://doi.org/10.1016/j.polymdegradstab.2017.04.022

    Article  CAS  Google Scholar 

  36. Ao L, Hu X, Xu M, Zhang Q, Huang L (2020) Central-radial bi-porous nanocatalysts with accessible high unit loading and robust magnetic recyclability for 4-nitrophenol reduction. Dalton Trans 49:4669–4674. https://doi.org/10.1039/D0DT00678E

    Article  CAS  Google Scholar 

  37. Liu W, Fei M, Ban Y, Jia A, Qiu R (2017) Preparation and evaluation of green composites from microcrystalline cellulose and a soybean-oil derivative. Polymers 9:541. https://doi.org/10.3390/polym9100541

    Article  CAS  Google Scholar 

  38. Aryanasab F (2016) A magnetically recyclable iron oxide-supported copper oxide nanocatalyst (Fe3O4–CuO) for one-pot synthesis of S-aryl dithiocarbamates under solvent-free conditions. RSC Adv 6:32018. https://doi.org/10.1039/C5RA20524G

    Article  CAS  Google Scholar 

  39. Lin B, Yang L, Dai H, Hou Q, Zhang L (2009) Thermal analysis of soybean oil based polyols. J Therm Anal Calorim 95:977. https://doi.org/10.1007/s10973-007-8929-3

    Article  CAS  Google Scholar 

  40. Song YJ, Yoo CY, Hong JT, Kim SJ, Son SU, Jang HY (2008) Nanocrystalline copper oxide(II)-catalyzed Alkyne-Azide Cycloadditions. Bull Korean Chem Soc 29:1561–1564. https://doi.org/10.5012/bkcs.2008.29.8.1561

    Article  CAS  Google Scholar 

  41. Vibhute SP, Mhaldar PM, Korade SN, Gaikwad DS, Shejawal RV, Pore DM (2018) Synthesis of magnetically separable catalyst Cu-ACP-Am-Fe3O4@SiO2 for Huisgen 1,3-dipolar cycloaddition. Tetrahedron Lett 59:3643–3652. https://doi.org/10.1016/j.tetlet.2018.08.045

    Article  CAS  Google Scholar 

  42. Halluin Md, Mabit T, Fairley N, Fernandez V, Gawande MB, Grognec EL, Felpin FX (2015) Graphite-supported ultra-small copper nanoparticles–preparation, characterization and catalysis applications. Carbon 93:974–983. https://doi.org/10.1016/j.carbon.2015.06.017

    Article  CAS  Google Scholar 

  43. Shaabani S, Tavousi Tabatabaei A, Shaabani A (2017) Copper(I) oxide nanoparticles supported on magnetic casein as a bio-supported and magnetically recoverable catalyst for aqueous click chemistry synthesis of 1,4-disubstituted 1,2,3-triazole. Appl Organometal Chem 31:3559. https://doi.org/10.1002/aoc.3559

    Article  CAS  Google Scholar 

  44. Jafari Z, Seyedi SM, Sadeghian H (2020) Application of magnetic chicken feather powder-Cu to the click synthesis of 1,2,3-triazoles. Polycycl Aromat Compd 40:245–256. https://doi.org/10.1080/10406638.2017.1403330

    Article  CAS  Google Scholar 

  45. Zhang Z, Song P, Zhou J, Chen Y, Lin B, Li Y (2016) Metathesis strategy for the immobilization of copper(ii) onto carboxymethylcellulose/Fe3O4 nanohybrid supports: efficient and recoverable magnetic catalyst for the CuAAC reaction. Ind Eng Chem Res 55:12301–12308. https://doi.org/10.1021/acs.iecr.6b03158

    Article  CAS  Google Scholar 

  46. Dolatkhah Z, Javanshir S, Bazgir A, Mohammadkhani A (2018) Magnetic isinglass a nano-bio support for copper immobilization: Cu–IG@Fe3O4 a heterogeneous catalyst for triazoles synthesis. ChemistrySelect 3:5486–5493. https://doi.org/10.1002/slct.201800501

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the research council of Shahrekord and Yazd University for their supports in accomplishment of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abbas Ali Jafari or Jalal Albadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehkordi, S.S.S., Jafari, A.A., Albadi, J. et al. Mesoporous epoxidized soybean oil-supported copper-based magnetic nanocatalyst and amberlite-supported azide as a green and efficient catalytic system for 1,2,3-triazole synthesis. Mol Divers 27, 177–192 (2023). https://doi.org/10.1007/s11030-022-10408-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10408-6

Keywords

Navigation