Skip to main content

Advertisement

Log in

Anticonvulsant activity, molecular modeling and synthesis of spirooxindole-4H-pyran derivatives using a novel reusable organocatalyst

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Fifteen derivatives of spirooxindole-4H-pyran (A1A15) were subjected to evaluate through intravenous infusion of pentylenetetrazole (PTZ)-induced epilepsy mouse models. Four doses of the compounds (20, 40, 60 and 80 mg/kg) were tested in comparison with diazepam as positive control. The resulted revealed that compounds A3 and A12 were the most active compounds and indicated significant anticonvulsant activity in the PTZ test. The tested compounds were prepared via a multicomponent reaction using graphene oxide (GO) based on the 1-(2-aminoethyl) piperazine as a novel heterogeneous organocatalyst. The prepared catalyst (GO-A.P.) was characterized using some diverse microscopic and spectroscopic procedures as well. The results showed high catalytic activity of the catalyst in the synthesis of spirooxindole-4H-pyran derivatives. The GO-A.P. catalyst was reusable at least for 5 times with no significant decrease in its catalytic action. In silico assessment of physicochemical activity of all compounds also were done which represented appropriate properties. Finally, molecular docking study was performed to achieve their binding affinities as γ‐aminobutyric acid-A (GABA‐A) receptor agonists as a plausible mechanism of their anticonvulsant action. Binding free energy values of the compounds represented strongly matched with biological activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1:
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Marzouk AA, Bass AK, Ahmed MS, Abdelhamid AA, Elshaier YA, Salman AM et al (2020) Design, synthesis and anticonvulsant activity of new imidazolidindione and imidazole derivatives. Bioorg Chem. 101:104020

    Article  CAS  PubMed  Google Scholar 

  2. Kumar R, Singh T, Singh H, Jain S, Roy R (2014) Design, synthesis and anticonvulsant activity of some new 6, 8-halo-substituted-2h-[1, 2, 4] triazino [5, 6-b] indole-3 (5h)-one/-thione and 6, 8-halo-substituted 5-methyl-2h-[1, 2, 4] triazino [5, 6-b] indol-3 (5h)-one/-thione. EXCLI J 13:225

    PubMed  PubMed Central  Google Scholar 

  3. Tang DH, Malone DC, Warholak TL, Chong J, Armstrong EP, Slack MK et al (2015) Prevalence and incidence of epilepsy in an elderly and low-income population in the United States. J Clin Neurol 11(3):252–261

    Article  PubMed  PubMed Central  Google Scholar 

  4. Banerjee B (2017) Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason Sonochem 35:15–35

    Article  CAS  PubMed  Google Scholar 

  5. Cheng D, Ishihara Y, Tan B, Barbas CF III (2014) Organocatalytic asymmetric assembly reactions: synthesis of spirooxindoles via organocascade strategies. ACS Catal 4(3):743–762

    Article  CAS  Google Scholar 

  6. Pavlovska TL, Redkin RG, Lipson VV, Atamanuk DV (2016) Molecular diversity of spirooxindoles. Synthesis and biological activity. Mol Divers 20(1):299–344

    Article  CAS  PubMed  Google Scholar 

  7. Akbari A, Azami-Sardooei Z, Hosseini-Nia A (2013) Synthesis and biological evaluation of 2-Amino-4H-pyran-3, 4, 5-tricarboxylate salt derivatives. J Korean Chem Soc 57(4):455–460

    Article  CAS  Google Scholar 

  8. Zhang M, Fu Q-Y, Gao G, He H-Y, Zhang Y, Wu Y-S et al (2017) Catalyst-free, visible-light promoted one-pot synthesis of spirooxindole-pyran derivatives in aqueous ethyl lactate. ACS Sustain Chem Eng 5(7):6175–6182

    Article  CAS  Google Scholar 

  9. Laskar S, Brahmachari G (2014) Access to biologically relevant diverse chromene heterocycles via multicomponent reactions (MCRs): recent advances. Org Biomol Chem 2:1–50

    Google Scholar 

  10. Mahdavi S, Habibi A, Dolati H, Habibi M (2014) Synthesis of 2-amino-4H-pyran derivatives via three component reaction in the presence of 4-Dimethylaminopyridine (DMAP) as catalyst

  11. Brahmachari G (2021) Green synthetic approaches for biologically relevant 2-amino-4H-pyrans and 2-amino-4H-pyran-annulated heterocycles in aqueous media. In: Green synthetic approaches for biologically relevant heterocycles. Elsevier, India, pp 471–504

  12. Martínez-Grau A, Marco J (1997) Friedländer reaction on 2-amino-3-cyano-4H-pyrans: synthesis of derivatives of 4H-pyran [2, 3-b] quinoline, new tacrine analogues. Bioorg Med Chem Lett 7(24):3165–3170

    Article  Google Scholar 

  13. Zhang W-H, Chen M-N, Hao Y, Jiang X, Zhou X-L, Zhang Z-H (2019) Choline chloride and lactic acid: a natural deep eutectic solvent for one-pot rapid construction of spiro [indoline-3, 4′-pyrazolo [3, 4-b] pyridines]. J Mol Liq 278:124–129

    Article  CAS  Google Scholar 

  14. Vine KL, Locke JM, Ranson M, Pyne SG, Bremner JB (2007) An investigation into the cytotoxicity and mode of action of some novel N-alkyl-substituted isatins. J Med Chem 50(21):5109–5117

    Article  CAS  PubMed  Google Scholar 

  15. Logan J, Fox M, Morgan J, Makohon A, Pfau C (1975) Arenavirus inactivation on contact with N-substituted isatin beta-thiosemicarbazones and certain cations. J Gen Virol 28(3):271–283

    Article  CAS  PubMed  Google Scholar 

  16. Pandeya SN, Raja AS, Stables JP (2002) Synthesis of isatin semicarbazones as novel anticonvulsants-role of hydrogen bonding. J Pharm Pharm Sci 5(3):266–271

    CAS  PubMed  Google Scholar 

  17. Pandeya SN, Smitha S, Jyoti M, Sridhar SK (2005) Biological activities of isatin and its derivatives. Acta Pharm 55(1):27–46

    CAS  PubMed  Google Scholar 

  18. Coaviche-Yoval A, Luna H, Tovar-Miranda R, Soriano-Ursúa MA, Trujillo-Ferrara JG (2019) Synthesis and biological evaluation of novel 2, 3-disubstituted benzofuran analogues of GABA as neurotropic agents. Med Chem 15(1):77–86

    Article  CAS  PubMed  Google Scholar 

  19. Divar M, Zomorodian K, Sabet R, Moeini M, Khabnadideh S (2019) An efficient method for synthesis of some novel spirooxindole-4H-pyran derivatives. Polycycl Aromat Compd 41:1–14

    Google Scholar 

  20. Mohammadi Ziarani G, Hosseini Mohtasham N, Lashgari N, Badiei A, Amanlou M, Bazl R (2012) Convenient one-pot synthesis of spirooxindole-4H-pyrans in the presence of SBA-Pr-NH2 and evaluation of their urease inhibitory activities. J Nanostruct 2(4):489–500

    Google Scholar 

  21. Wang L-M, Jiao N, Qiu J, Yu J-J, Liu J-Q, Guo F-L et al (2010) Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media. Tetrahedron 66(1):339–343

    Article  CAS  Google Scholar 

  22. Zhu S-L, Ji S-J, Zhang Y (2007) A simple and clean procedure for three-component synthesis of spirooxindoles in aqueous medium. Tetrahedron 63(38):9365–9372

    Article  CAS  Google Scholar 

  23. Shanthi G, Subbulakshmi G, Perumal PT (2007) A new InCl3-catalyzed, facile and efficient method for the synthesis of spirooxindoles under conventional and solvent-free microwave conditions. Tetrahedron 63(9):2057–2063

    Article  CAS  Google Scholar 

  24. Zhang M, Liu Y-H, Shang Z-R, Hu H-C, Zhang Z-H (2017) Supported molybdenum on graphene oxide/Fe3O4: an efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation. Catal Commun 88:39–44

    Article  CAS  Google Scholar 

  25. Bahrami K, Khodaei MM, Fattahpour P (2011) SBA-15-Pr–SO 3 H as nanoreactor catalyzed oxidation of sulfides into sulfoxides. Catal Sci Technol 1(3):389–393

    Article  CAS  Google Scholar 

  26. Meshram HM, Kumar DA, Prasad BRV, Goud PR (2010) Efficient and convenient polyethylene glycol (PEG)-mediated synthesis of spiro-oxindoles. Helv Chim Acta 93:648

    Article  CAS  Google Scholar 

  27. Chen M-N, Di J-Q, Li J-M, Mo L-P, Zhang Z-H (2020) Eosin Y-catalyzed one-pot synthesis of spiro [4H-pyran-oxindole] under visible light irradiation. Tetrahedron 76(14):131059

    Article  CAS  Google Scholar 

  28. Didaskalou C, Kupai J, Cseri L, Barabas J, Vass E, Holtzl T et al (2018) Membrane-grafted asymmetric organocatalyst for an integrated synthesis–separation platform. ACS Catal 8(8):7430–7438

    Article  CAS  Google Scholar 

  29. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  CAS  PubMed  Google Scholar 

  30. Singh RK, Kumar R, Singh DP (2016) Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv 6(69):64993–65011

    Article  CAS  Google Scholar 

  31. Kwan YCG, Ng GM, Huan CHA (2015) Identification of functional groups and determination of carboxyl formation temperature in graphene oxide using the XPS O 1s spectrum. Thin Solid Films 590:40–48

    Article  CAS  Google Scholar 

  32. Wang S, Li X, Liu Y, Zhang C, Tan X, Zeng G et al (2018) Nitrogen-containing amino compounds functionalized graphene oxide: synthesis, characterization and application for the removal of pollutants from wastewater: a review. J Hazard Mater 342:177–191

    Article  CAS  PubMed  Google Scholar 

  33. Leng L, Xu S, Liu R, Yu T, Zhuo X, Leng S et al (2020) Nitrogen containing functional groups of biochar: an overview. Bioresour Technol 298:122286

    Article  CAS  PubMed  Google Scholar 

  34. Mohammadi-Khanaposhtani M, Shabani M, Faizi M, Aghaei I, Jahani R, Sharafi Z et al (2016) Design, synthesis, pharmacological evaluation, and docking study of new acridone-based 1, 2, 4-oxadiazoles as potential anticonvulsant agents. Eur J Med Chem 112:91–98

    Article  CAS  PubMed  Google Scholar 

  35. Asadollahi A, Asadi M, Hosseini FS, Ekhtiari Z, Biglar M, Amanlou M (2019) Synthesis, molecular docking, and antiepileptic activity of novel phthalimide derivatives bearing amino acid conjugated anilines. Res Pharm Sci 14(6):534

    Article  PubMed  PubMed Central  Google Scholar 

  36. Enna SJ (2007) The GABA receptors. The GABA receptors. Springer, pp 1–21

  37. Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H (2002) GABA and GABA receptors in the central nervous system and other organs. In: Jeon KW (ed) International review of cytology, vol 213. Academic Press, New York, pp 1–47

    Google Scholar 

  38. Li M-M, Duan C-S, Yu Y-Q, Xu D-Z (2018) A general and efficient one-pot synthesis of spiro [2-amino-4H-pyrans] via tandem multi-component reactions catalyzed by Dabco-based ionic liquids. Dyes Pigm 150:202–206

    Article  CAS  Google Scholar 

  39. Molla A, Hussain S (2016) Base free synthesis of iron oxide supported on boron nitride for the construction of highly functionalized pyrans and spirooxindoles. RSC Adv 6(7):5491–5502

    Article  CAS  Google Scholar 

  40. Lamie PF, El-Kalaawy AM, Latif NSA, Rashed LA, Philoppes JN (2021) Pyrazolo [3, 4-d] pyrimidine-based dual EGFR T790M/HER2 inhibitors: design, synthesis, structure–activity relationship and biological activity as potential antitumor and anticonvulsant agents. Eur J Med Chem 214:113222

    Article  CAS  PubMed  Google Scholar 

  41. Sirakanyan SN, Spinelli D, Geronikaki A, Kartsev V, Hakobyan EK, Petrou A et al (2021) Synthesis and neurotropic activity of new heterocyclic systems: Pyridofuro [3, 2-d] pyrrolo [1, 2-a] pyrimidines, Pyridofuro [3, 2-d] pyrido [1, 2-a] pyrimidines and Pyridofuro [3′, 2′: 4, 5] pyrimido [1, 2-a] azepines. Molecules 26(11):3320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial assistance from the Shiraz University of Medical Sciences by way of Grant Number 95-01-36-13130 and 24020 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soghra Khabnadideh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 647 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami, L., Moezi, L., Amiri-Zirtol, L. et al. Anticonvulsant activity, molecular modeling and synthesis of spirooxindole-4H-pyran derivatives using a novel reusable organocatalyst. Mol Divers 26, 3129–3141 (2022). https://doi.org/10.1007/s11030-021-10372-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-021-10372-7

Keywords

Navigation