Skip to main content

Advertisement

Log in

Lupenone is a good anti-inflammatory compound based on the network pharmacology

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The dried rhizome of Musa basjoo Sieb. et Zucc. is Rhizoma Musae. It has been used to treat diabetes in Miao medicine in China. Lupenone was isolated from Rhizoma Musae and has good anti-diabetic activity. Its mechanism of action is unclear. Diabetes is a chronic low-level systemic inflammatory disease, and lupenone has anti-inflammatory activity, but the underlying mechanism is not fully elucidated. In this study, we aimed to construct the drug-target biologic network and predict the anti-inflammatory mechanism of lupenone. The network-based pharmacologic analysis platform was used to identify the target proteins related to inflammation. Furthermore, the effects of lupenone on acute, subacute and diabetic pancreatic inflammation were evaluated. The “component-target-disease” network was constructed using Cytoscape. Lupenone could regulate transcription factor p65, NF-kappa-B inhibitor alpha, transcription factor AP-1, NF-kappa-B essential modulator, nuclear factor NF-kappa-B p105 subunit, epidermal growth factor receptor, hypoxia-inducible factor 1-alpha and other proteins related to the PI3K-Akt, Toll-like receptor and NF-kappa B signaling pathways. In addition, lupenone significantly decreased acute and subacute inflammation in mice as well as the IL-1β and IFN-γ levels in the pancreas of diabetic rats. The above results provide strong support for studying the molecular mechanism of lupenone in the treatment of diabetes from the perspective of anti-inflammation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE (2017) IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128:40–50. https://doi.org/10.1016/j.diabres.2017.03.024

    Article  CAS  PubMed  Google Scholar 

  2. Peiró C, Lorenzo Ó, Carraro R, Sánchez-Ferrer CF (2017) IL-1β inhibition in cardiovascular complications associated to diabetes mellitus. Front Pharmacol 8:363. https://doi.org/10.3389/fphar.2017.00363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chatterjee S, Khunti K, Davies MJ (2017) Type 2 diabetes. Lancet 10085:2239–2251. https://doi.org/10.1016/S0140-6736(17)30058-2

    Article  CAS  Google Scholar 

  4. Na M, Kim BY, Osada H, Ahn JS (2009) Inhibition of protein tyrosine phosphatase 1B by lupeol and lupenone isolated from Sorbus commixta. J Enzym Inhib Med Chem 4:1056–1059. https://doi.org/10.1080/14756360802693312

    Article  CAS  Google Scholar 

  5. Xu F, Wu H, Wang X, Ye Y, Wang YM, Qian HB, Zhang YY (2014) RP-HPLC characterization of lupenone and β-sitosterol in Rhizoma Musae and evaluation of the anti-diabetic activity of lupenone in diabetic Sprague–Dawley rats. Molecules 9:14114–14127. https://doi.org/10.3390/molecules190914114

    Article  CAS  Google Scholar 

  6. Wu HM, Xu F, Hao JJ, Yang Y, Wang XP (2015) Antihyperglycemic activity of banana (Musa nana Lour.) peel and its active ingredients in alloxan-induced diabetic mice. In: 3rd international conference on material, mechanical and manufacturing engineering, pp 231–238. https://doi.org/10.2991/ic3me-15.2015.44

  7. Wu HM, Xu F, Wang YM, Qian HB, Wang XP (2017) Influence of general situation, glucose tolerance and insulin tolerance for lupenone in insulin resistance of type 2 diabetes rats. Lishizhen Med Mater Med Res 5:1035–1037

    Google Scholar 

  8. Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46:3–19. https://doi.org/10.1007/s00125-002-1009-0

    Article  CAS  PubMed  Google Scholar 

  9. Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R (2016) Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res 1:228–256. https://doi.org/10.1016/j.trsl.2015.08.011

    Article  CAS  Google Scholar 

  10. Eguchi K, Nagai R (2017) Islet inflammation in type 2 diabetes and physiology. J Clin Invest 1:14–23. https://doi.org/10.1172/JCI88877

    Article  Google Scholar 

  11. Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2:98–107. https://doi.org/10.1038/nri2925

    Article  CAS  Google Scholar 

  12. Marzban L (2015) New insights into the mechanisms of islet inflammation in type 2 diabetes. Diabetes 64:1094–1096. https://doi.org/10.2337/db14-1903

    Article  CAS  PubMed  Google Scholar 

  13. Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nat Rev Endocrinol 4:219. https://doi.org/10.1038/nrendo.2009.21

    Article  CAS  Google Scholar 

  14. Xue JT, Shi YL, Li CY, Song HJ (2018) Network pharmacology-based prediction of the active ingredients, potential targets, and signaling pathways in compound Lian-Ge granules for treatment of diabetes. J Cell Biochem. https://doi.org/10.1002/jcb.27933

    Article  PubMed  Google Scholar 

  15. Ge Q, Chen L, Tang M, Zhang S, Liu L, Gao L, Ma S, Liu L, Kong M, Yao Q, Chen K, Feng F (2018) Analysis of mulberry leaf components in the treatment of diabetes using network pharmacology. Eur J Pharmacol 833:50–62. https://doi.org/10.1016/j.ejphar.2018.05.021

    Article  CAS  PubMed  Google Scholar 

  16. Pereira AS, Bester MJ, Apostolides Z (2017) Exploring the anti-proliferative activity of Pelargonium sidoides DC with in silico target identification and network pharmacology. Mol Divers 4:809–820. https://doi.org/10.1007/s11030-017-9769-0

    Article  CAS  Google Scholar 

  17. Wang XP, Hao JJ, Xu SN (2012) The chemical constituents in ethyl acetate extraction from the Rhizoma Musae. Lishizhen Med Mater Med Res 23:515–516

    Google Scholar 

  18. Ahn EK, Oh JS (2013) Lupenone isolated from Adenophora triphylla var. japonica extract inhibits adipogenic differentiation through the downregulation of PPARγ in 3T3-L1 Cells. Phytother Res 27:761–766. https://doi.org/10.1002/ptr.4779

    Article  CAS  PubMed  Google Scholar 

  19. Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y, Xu X, Li Y, Wang Y, Yang L (2014) TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 1:13. https://doi.org/10.1186/1758-2946-6-13

    Article  CAS  Google Scholar 

  20. Wang X, Shen Y, Wang S, Li S, Zhang W, Liu X, Lai L, Pei J, Li H (2017) PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 45(W1):356–360. https://doi.org/10.1093/nar/gkx374

    Article  CAS  Google Scholar 

  21. Chen Y, Wei J, Zhang Y, Sun W, Li Z, Wang Q, Xu X, Li C, Li P (2018) Anti-endometriosis mechanism of Jiawei Foshou San based on network pharmacology. Front Pharmacol 9:811. https://doi.org/10.3389/fphar.2018.00811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  23. Hsin KY, Matsuoka Y, Asai Y, Kamiyoshi K, Watanabe T, Kawaoka Y, Kitano H (2016) systemsDock: a web server for network pharmacology-based prediction and analysis. Nucleic Acids Res 44(W1):507–513. https://doi.org/10.1093/nar/gkw335

    Article  CAS  Google Scholar 

  24. Saeed MK, Deng Y, Dai R, Li W, Yu Y, Iqbal Z (2010) Appraisal of antinociceptive and anti-inflammatory potential of extract and fractions from the leaves of Torreya grandis Fort Ex. Lindl. J Ethnopharmacol 2:414–418. https://doi.org/10.1016/j.jep.2009.10.024

    Article  Google Scholar 

  25. Wilches I, Tobar V, Peñaherrera E, Cuzco N, Jerves L, Vander Heyden Y, León-Tamariz F, Vila E (2015) Evaluation of anti-inflammatory activity of the methanolic extract from Jungia rugosa leaves in rodents. J Ethnopharmacol 173:166–171. https://doi.org/10.1016/j.jep.2015.07.004

    Article  PubMed  Google Scholar 

  26. Xu F, Huang X, Wu H, Wang X (2018) Beneficial health effects of lupenone triterpene: a review. Biomed Pharmacother 103:198–203. https://doi.org/10.1016/j.biopha.2018.04.019

    Article  CAS  PubMed  Google Scholar 

  27. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 11:682. https://doi.org/10.1038/nchembio.118

    Article  CAS  Google Scholar 

  28. Stumvoll M, Goldstein BJ, van Haeften TW (2005) Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365:1333. https://doi.org/10.1016/S0140-6736(05)61032-X

    Article  CAS  PubMed  Google Scholar 

  29. Hong YS, Chang Y, Ryu S, Cainzos-Achirica M, Kwon MJ, Zhang Y, Chol Y, Ahn J, Rampal S, Zhao D, Pastor-Barriuso R, Lazo M, Shin H, Cho J, Guallar E (2017) Hepatitis B and C virus infection and diabetes mellitus: a cohort study. Sci Rep UK 1:4606. https://doi.org/10.1038/s41598-017-04206-6

    Article  CAS  Google Scholar 

  30. Hum J, Jou JH, Green PK, Berry K, Lundblad J, Hettinger BD, Chang M, Loannou GN (2017) Improvement in glycemic control of type 2 diabetes after successful treatment of hepatitis C virus. Diabetes Care 1:85. https://doi.org/10.2337/dc17-0485

    Article  CAS  Google Scholar 

  31. Stone VM, Hankaniemi MM, Svedin E, Sioofy-Khojine A, Oikarinen S, Hyöty H, Laitinen OH, Hytönen VP, Flodström-Tullberg M (2018) A Coxsackievirus B vaccine protects against virus-induced diabetes in an experimental mouse model of type 1 diabetes. Diabetologia 2:476–481. https://doi.org/10.1007/s00125-017-4492-z

    Article  CAS  Google Scholar 

  32. Yasukawa K, Yu SY, Yamanouchi S, Takido M, Akihisa T, Tamura T (1995) Some lupane-type triterpenes inhibit tumor promotion by 12-O-tetradecanoylphorbol13-acetate in two-stage carcinogenesis in mouse skin. Phytomedicine 4:309–313. https://doi.org/10.1016/S0944-7113(11)80008-5

    Article  Google Scholar 

  33. Boni-Schnetzler M, Thorne J, Parnaud G, Marselli L, Ehses JA, Kerr-Conte J, Pattou F, Halban PA, Weir GC, Donath MY (2008) Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta-cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation. J Clin Endocr Metab 10:4065–4074. https://doi.org/10.1210/jc.2008-0396

    Article  CAS  Google Scholar 

  34. Sloan-Lancaster J, Abu-Raddad E, Polzer J, Miller JW, Scherer JC, De Gaetano A, Berg JK, Landschulz WH (2013) Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1β antibody, in patients with type 2 diabetes. Diabetes Care 8:2239–2246. https://doi.org/10.2337/dc12-1835

    Article  CAS  Google Scholar 

  35. Cavelti-Weder C, Timper K, Seelig E, Keller C, Osranek M, Lässing U, Spohn G, Maurer P, Müller P, Jennings GT, Willers J, Saudan P, Donath MY, Bachmann MF (2016) Development of an interleukin-1β vaccine in patients with type 2 diabetes. Mol Ther 5:1003–1012. https://doi.org/10.1038/mt.2015.227

    Article  CAS  Google Scholar 

  36. Kiernan K, MacIver NJ (2018) Viral infection “interferes” with glucose tolerance. Immunity 1:6–8. https://doi.org/10.1016/j.immuni.2018.06.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Guiyang University of Chinese Medicine Doctor Startup Fund (2017), NSFC (81860737), The Guizhou domestic first-class construction project [(Chinese Materia Medica) (GNYL [2017] 008)] and Guizhou Province Science and Technology Project (QiankeheLHzi [2016] 7116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongmei Wu.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Human and animal rights

This research involves animals, and the experiments were approved by the Animal Ethics Committee for animal experimentation.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Yang, L., Huang, X. et al. Lupenone is a good anti-inflammatory compound based on the network pharmacology. Mol Divers 24, 21–30 (2020). https://doi.org/10.1007/s11030-019-09928-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09928-5

Keywords

Navigation