Skip to main content
Log in

Ammonium chloride-catalyzed green multicomponent synthesis of dihydropyrazine and tetrahydrodiazepine derivatives “on water”

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

This research describes a simple and efficient one-pot synthetic approach for the preparation of tetrahydrodiazepine and dihydropyrazine (or dihydroquinoxaline) derivatives in high yields in the presence of a substoichiometric amount of ammonium chloride as a green accelerator on water at 50 °C within 1–3 h.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2

Similar content being viewed by others

References

  1. Clark JH (1999) Green chemistry: challenges and opportunities. Green Chem 1:1

    Article  CAS  Google Scholar 

  2. Sheldon RA, Arends I, Hanefeld U (2007) Green chemistry and catalysis. Wiley, New York

    Book  Google Scholar 

  3. Anastas PT, Warner JC (2000) Green chemistry: theory and practice, vol 30. Oxford University Press, Oxford

    Google Scholar 

  4. Albini A, Protti S (2016) Paradigms in green chemistry and technology. Springer, Berlin

    Book  Google Scholar 

  5. Gaich T, Baran PS (2010) Aiming for the ideal synthesis. J Organ Chem 75:4657

    Article  CAS  Google Scholar 

  6. Wender P, Handy S, Wright D (1997) Towards the ideal synthesis: an everyday tool in the world of the chemical industry, syntheses are still some way from beingideal'. Chem Ind 765

  7. Ugi I, Werner B, Dömling A (2003) The chemistry of isocyanides, their multicomponent reactions and their libraries. Molecules 8:53

    Article  CAS  PubMed Central  Google Scholar 

  8. Lubineau A, Augé J, Queneau Y (1994) Water-promoted organic reactions. Synthesis 1994:741

    Article  Google Scholar 

  9. Jaiswal PK, Sharma V, Prikhodko J, Mashevskaya IV, Chaudhary S (2017) “On water” ultrasound-assisted one pot efficient synthesis of functionalized 2-oxo-benzo [1,4]oxazines: First application to the synthesis of anticancer indole alkaloid, Cephalandole A. Tetrahedron Lett 58:2077

    Article  CAS  Google Scholar 

  10. Zeng L-Y, Liu T, Yang J, Yang Y, Cai C, Liu S-W (2017) “On-water” facile synthesis of novel pyrazolo [3,4-b] pyridinones possessing anti-influenza virus activity. ACS Comb Sci 19(7):437–446

    Article  CAS  PubMed  Google Scholar 

  11. Dömling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168

    Article  Google Scholar 

  12. Zhu J, Bienaymé H (2006) Multicomponent reactions. Wiley, New York

    Google Scholar 

  13. Ugi I, Dömling A, Hörl W (1994) Multicomponent reactions in organic chemistry. Endeavour 18:115

    Article  CAS  Google Scholar 

  14. Nair V, Rajesh C, Vinod A et al (2003) Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes. Acc Chem Res 36:899

    Article  CAS  PubMed  Google Scholar 

  15. Akritopoulou-Zanze I (2008) Isocyanide-based multicomponent reactions in drug discovery. Curr Opin Chem Biol 12:324

    Article  CAS  PubMed  Google Scholar 

  16. Pal R (2013) Recent progress of ammonium chloride as catalyst in organic synthesis. IOSR J Appl Chem 4:86

    Article  CAS  Google Scholar 

  17. Bonne D, Dekhane M, Zhu J (2004) Ammonium chloride promoted ugi four-component, five-center reaction of α-substituted α-isocyano acetic acid: a strong solvent effect. Org Lett 6:4771

    Article  CAS  PubMed  Google Scholar 

  18. Dabiri M, Bahramnejad M, Baghbanzadeh M (2009) Ammonium salt catalyzed multicomponent transformation: simple route to functionalized spirochromenes and spiroacridines. Tetrahedron 65:9443

    Article  CAS  Google Scholar 

  19. Larsen SD, Grieco PA (1985) Aza Diels-Alder reactions in aqueous solution: cyclocondensation of dienes with simple iminium salts generated under Mannich conditions. J Am Chem Soc 107:1768

    Article  CAS  Google Scholar 

  20. Janvier P, Sun X, Bienaymé H, Zhu J (2002) Ammonium chloride-promoted four-component synthesis of pyrrolo [3,4-b]pyridin-5-one. J Am Chem Soc 124:2560

    Article  CAS  PubMed  Google Scholar 

  21. Shaabani A, Bazgir A, Teimouri F (2003) Ammonium chloride-catalyzed one-pot synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions. Tetrahedron Lett 44:857

    Article  CAS  Google Scholar 

  22. Bonne D, Dekhane M, Zhu J (2005) Exploiting the dual reactivity of o-isocyanobenzamide: three-component synthesis of 4-imino-4 H-3, 1-benzoxazines. Org Lett 7:5285

    Article  CAS  PubMed  Google Scholar 

  23. Fayol A, Zhu J (2004) Synthesis of polysubstituted 4,5,6,7-tetrahydrofuro [2,3-c] pyridines by a novel multicomponent reaction. Org Lett 6:115

    Article  CAS  PubMed  Google Scholar 

  24. Foroughifar N, Mobinikhaledi A, Moghanian H, Mozafari R, Esfahani HR (2011) Ammonium chloride-catalyzed one-pot synthesis of tetrahydrobenzo [α] xanthen-11-one derivatives under solvent-free conditions. Synth Commun 41:2663

    Article  CAS  Google Scholar 

  25. Mobinikhaledi A, Mosleh T, Foroughifar N (2015) Triethyl benzyl ammonium chloride (TEBAC) catalyzed solvent-free one-pot synthesis of pyrimido [4,5-d]pyrimidines. Res Chem Intermed 41:2985

    Article  CAS  Google Scholar 

  26. Hussein E (2015) Ammonium chloride-catalyzed four-component sonochemical synthesis of novel hexahydroquinolines bearing a sulfonamide moiety. Russ J Org Chem 51:54

    Article  CAS  Google Scholar 

  27. Ahumada G, Carrillo D, Manzur C, Fuentealba M, Roisnel T, Hamon J-R (2016) A facile access to new diazepines derivatives: Spectral characterization and crystal structures of 7-(thiophene-2-yl)-5-(trifluoromethyl)-2, 3-dihydro-1H-1, 4-diazepine and 2-thiophene-4-trifluoromethyl-1, 5-benzodiazepine. J Mol Struct 1125:781–787

    Article  CAS  Google Scholar 

  28. Raboisson P, Marugán JJ, Schubert C et al (2005) Structure-based design, synthesis, and biological evaluation of novel 1,4-diazepines as HDM2 antagonists. Bioorg Med Chem Lett 15:1857

    Article  CAS  PubMed  Google Scholar 

  29. Fryer RI (2009) The chemistry of heterocyclic compounds, bicyclic diazepines: diazepines with an additional ring. Wiley, New York

    Google Scholar 

  30. Seitz LE, Suling WJ, Reynolds RC (2002) Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J Med Chem 45:5604

    Article  CAS  PubMed  Google Scholar 

  31. Li J-Y, Cragoe E Jr, Lindemann B (1985) Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: I. Pyrazine-ring modifications. J Membr Biol 83:45

    Article  CAS  PubMed  Google Scholar 

  32. Boström J, Berggren K, Elebring T, Greasley PJ, Wilstermann M (2007) Scaffold hopping, synthesis and structure–activity relationships of 5, 6-diaryl-pyrazine-2-amide derivatives: a novel series of CB1 receptor antagonists. Bioorg Med Chem 15:4077

    Article  CAS  Google Scholar 

  33. Fink M, Irwin P, Weinfeld RE, Schwartz MA, Canney AH (1976) Blood levels and electroencephalographic effects of diazepam and bromazepam. Clin Pharmacol Ther 20:184

    Article  CAS  PubMed  Google Scholar 

  34. Chowdary K, Rao YS (2003) Design and in vitro and in vivo evaluation of mucoadhesive microcapsules of glipizide for oral controlled release: a technical note. AAPS PharmSciTech 4:87

    Article  PubMed Central  Google Scholar 

  35. Pozarentzi M, Stephanidou-Stephanatou J, Tsoleridis CA (2002) An efficient method for the synthesis of 1,5-benzodiazepine derivatives under microwave irradiation without solvent. Tetrahedron Lett 43:1755

    Article  CAS  Google Scholar 

  36. Shaabani A, Maleki A, Hajishaabanha F et al (2009) Novel syntheses of tetrahydrobenzodiazepines and dihydropyrazines via isocyanide-based multicomponent reactions of diamines. J Comb Chem 12:186

    Article  CAS  Google Scholar 

  37. Shaabani A, Maleki A, Mofakham H, Moghimi-Rad J (2008) A novel one-pot pseudo-five-component synthesis of 4,5,6,7-tetrahydro-1 H-1,4-diazepine-5-carboxamide derivatives. J Organ Chem 73:3925

    Article  CAS  Google Scholar 

  38. Neochoritis CG, Tsoleridis CA, Stephanidou-Stephanatou J, Kontogiorgis CA, Hadjipavlou-Litina DJ (2010) 1,5-Benzoxazepines vs 1,5-benzodiazepines. One-pot microwave-assisted synthesis and evaluation for antioxidant activity and lipid peroxidation inhibition. J Med Chem 53:8409

    Article  CAS  PubMed  Google Scholar 

  39. Shaabani A, Maleki A, Moghimi-Rad J (2007) A novel isocyanide-based three-component reaction: synthesis of highly substituted 1,6-dihydropyrazine-2, 3-dicarbonitrile derivatives. J Organ Chem 72:6309

    Article  CAS  Google Scholar 

  40. Park Y-I, Son J-H, Kang J-S, Kim S-K, Lee J-H, Park J-W (2008) Synthesis and electroluminescence properties of novel deep blue emitting 6, 12-dihydro-diindeno [1, 2-b; 1′, 2′-e] pyrazine derivatives. Chem Commun 18:2143

    Article  CAS  Google Scholar 

  41. Thakuria H, Das G (2006) One-pot efficient green synthesis of 1, 4-dihydro-quinoxaline-2, 3-dione derivatives. J Chem Sci 118:425

    Article  CAS  Google Scholar 

  42. Li J, Liu Y, Li C, Jia X (2009) CAN-catalyzed syntheses of 3, 4-dihydroquinoxalin-2-amine derivatives based on isocyanides. Tetrahedron Lett 50:6502

    Article  CAS  Google Scholar 

  43. Chari MA (2011) Amberlyst-15: an efficient and reusable catalyst for multi-component synthesis of 3, 4-dihydroquinoxalin-2-amine derivatives at room temperature. Tetrahedron Lett 52:6108

    Article  CAS  Google Scholar 

  44. Shobha D, Chari MA, Mukkanti K, Kim SY (2012) Synthesis and anti-neuroinflammatory activity studies of substituted 3, 4-dihydroquinoxalin-2-amine derivatives. Tetrahedron Lett 53:2675

    Article  CAS  Google Scholar 

  45. Kolla SR, Lee YR (2010) EDTA-catalyzed synthesis of 3,4-dihydroquinoxalin-2-amine derivatives by a three-component coupling of one-pot condensation reactions in an aqueous medium. Tetrahedron 66:8938

    Article  CAS  Google Scholar 

  46. Maleki A (2012) Fe3O4/SiO2 nanoparticles: an efficient and magnetically recoverable nanocatalyst for the one-pot multicomponent synthesis of diazepines. Tetrahedron 68:7827

    Article  CAS  Google Scholar 

  47. Shobha D, Chari MA, Sang L-C, Aldeyab SS, Mukkanti K, Vinu A (2011) Room-temperature multicomponent synthesis of 3,4-dihydroquinoxalin-2-amine derivatives using highly ordered 3D nanoporous aluminosilicate catalyst. Synlett 2011:1923

    Article  CAS  Google Scholar 

  48. Shaabani A, Maleki A, Mofakham H (2008) Novel multicomponent one-pot synthesis of tetrahydro-1 H-1,5-benzodiazepine-2-carboxamide derivatives. J Comb Chem 10:595

    Article  CAS  PubMed  Google Scholar 

  49. Shaabani A, Soleimani E, Maleki A, Moghimi-Rad J (2009) A novel class of extended pi-conjugated systems: one-pot synthesis of bis-3-aminoimidazo [1,2-a] pyridines, pyrimidines and pyrazines. Mol Divers 13:269

    Article  CAS  PubMed  Google Scholar 

  50. Tracy DJ (1979) Catalytic effect of ammonium chloride on the synthesis of imidate esters. J Heterocycl Chem 16:1287

    Article  CAS  Google Scholar 

  51. Shaabani A, Maleki A, Mofakham H, Khavasi HR (2008) Novel isocyanide-based three-component synthesis of 3, 4-dihydroquinoxalin-2-amine derivatives. J Comb Chem 10:323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Iran National Science Foundation (INSF) and Research Council of Shahid Beheshti University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Shaabani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2762 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaabani, A., Sepahvand, H. & Ghasemi, S. Ammonium chloride-catalyzed green multicomponent synthesis of dihydropyrazine and tetrahydrodiazepine derivatives “on water”. Mol Divers 23, 585–592 (2019). https://doi.org/10.1007/s11030-018-9893-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9893-5

Keywords

Navigation