Skip to main content
Log in

An unusual synthesis of 3-(2-(arylamino)thiazol-4-yl)-2H-chromen-2-ones from ethyl 2-(chloromethyl)-2-hydroxy-2H-chromene-3-carboxylate via benzopyran ring opening

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An unusual and unexpected synthesis of 3-(2-(arylamino)thiazol-4-yl)-2H-chromen-2-ones has been observed by the reaction of ethyl 2-(chloromethyl)-2-hydroxy-2H-chromene-3-carboxylate with various arylthioureas in ethanol under mild reaction conditions with excellent yields. The ambiguity in the structure of the obtained products has been solved by recording its single-crystal X-ray analysis. This protocol has been found to be a novel approach for the preparation of title compounds via benzopyran ring opening. A systematic plausible mechanism has been proposed for the formation of the product. Also, an efficient one-pot three-component method has been demonstrated for the formation of title compounds starting from salicylaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 4

References

  1. Kavitha K, Aparna P (2018) Comprehensive review on the applications of Coumarin fused with five membered heterocyclics in the field of material chemistry, agrochemistry and phormocology. RJLBPCS 4:204–224. https://doi.org/10.26479/2018.0402.16

    Article  CAS  Google Scholar 

  2. Cacic M, Trakovnik M, Cacic F (2006) Synthesis and antimicrobial activity of some derivatives on the basis (7-hydroxy-2-oxo-2H-chromen-4-yl)-acetic acid hydrazide. Molecules 11:134–147. https://doi.org/10.3390/11010134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kashman Y, Gustafson KR, Fuller R (1992) HIV inhibitory natural products. Part 7. The calanolides, a novel HIV-inhibitory class of Coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem 35:2735–2743. https://doi.org/10.1021/jm00093a004

    Article  CAS  PubMed  Google Scholar 

  4. Yun BS, Lee IK, Ryoo IJ, Yoo LD (2001) Coumarins with monoamine oxidase inhibitory activity and antioxidative Coumarino-lignans from Hibiscus syriacus. J Natl Prod 64:1238–1240. https://doi.org/10.1021/np0100946

    Article  CAS  Google Scholar 

  5. Atul M, Malde A, Verma J (2008) Synthesis, anti-tubercular activity and 3D-QSAR study of Coumarin-4-acetic acid benzylidene hydrazides. Eur J Med Chem 43:2395–2403. https://doi.org/10.1016/j.ejmech.2008.01.016

    Article  CAS  Google Scholar 

  6. Kontogiorgis CA, Hadjipavlou LDJ (2005) Synthesis and anti-inflammatory activity of coumarin derivatives. J Med Chem 48:6400–6408. https://doi.org/10.1021/jm0580149

    Article  CAS  PubMed  Google Scholar 

  7. Khan KM, Zafar SS, Khan MZ, Zia U, Coudhary MI, Rahman AU (2004) Synthesis of coumarin derivatives with cytotoxic, antibacterial and antifungal activity. J Enzyme Inhib Med Chem 19:373–379. https://doi.org/10.1080/14756360409162453

    Article  CAS  PubMed  Google Scholar 

  8. Racane L, Tralic KV, Fiser JL (2001) Synthesis of bis-substituted amidinobenzothiazoles as potential anti-HIV agents. Heterocycles 55:2085–2098. https://doi.org/10.3987/com-01-9305

    Article  CAS  Google Scholar 

  9. Mirjana P, Sasa S, Milos S, Vesna K, Gordana B, Velimir P (2012) Synthesis and in vitro antitumour screening of 2-(b-D-xylofuranosyl)thiazole-4-carboxamide and two novel tiazofurin analogues with substituted tetrahydrofurodioxol moiety as a sugar mimic. Bioorg Med Chem Lett 22:6700–6704. https://doi.org/10.1016/j.bmcl.2012.08.093

    Article  CAS  Google Scholar 

  10. Maren TH (1976) Relations between structure and biological activity of sulfonamides. Annu Rev Pharmacol Toxicol 16:309–327. https://doi.org/10.1146/annurev.pa.16.040176.001521

    Article  CAS  PubMed  Google Scholar 

  11. Gouda MA, Berghot MA, Abd EG, Khalil AM (2010) Synthesis and antimicrobial activities of some new thiazole and pyrazole derivatives based on 4,5,6,7-tetrahydrobenzo thiophene moiety. Eur J Med Chem 45:1338–1345. https://doi.org/10.1016/j.ejmech.2009.12.020

    Article  CAS  PubMed  Google Scholar 

  12. Wilby MJ, Hutchinson PJ (2004) The pharmacology of chlormethiazole: a potential neuroprotective agent. CNS Drug Rev 10:281–294. https://doi.org/10.1111/j.1527-3458.2004.tb00028

    Article  CAS  PubMed  Google Scholar 

  13. Farag AA (2015) Synthesis and antimicrobial activity of 5-(morpholinosulfonyl) isatin derivatives incorporating a thiazole moiety. Drug Res 65:373–379. https://doi.org/10.1055/s-0034-1384609

    Article  CAS  Google Scholar 

  14. Sheldrake PW, Matteucci M, McDonald E (2006) Facile generation of a library of 5-aryl-2-arylsulfonyl-1,3-thiazoles. Synlett 3:460–462. https://doi.org/10.1055/s-2006-926243

    Article  CAS  Google Scholar 

  15. Tang X, Yang J, Zhu Z, Zheng M, Wu W, Jiang H (2016) Access to thiazole via copper-catalyzed [3 + 1+1]-type condensation reaction under redox-neutral conditions. J Org Chem 81:11461–11466. https://doi.org/10.1021/acs.joc.6b02124

    Article  CAS  PubMed  Google Scholar 

  16. Lingaraju GS, Swaroop TR, Vinayaka AC, Kumar KSS, Sadashiva MP, Ragappa KS (2012) An easy access to 4,5-disubstituted thiazoles via base-induced click reaction of active methylene isocyanides with methyl dithiocarboxylates. Synthesis 44:1373–1379. https://doi.org/10.1055/s-0031-1290762

    Article  CAS  Google Scholar 

  17. Miura T, Funakoshi Y, Fujimoto Y, Nakahashi J, Murakami M (2015) Facile synthesis of 2,5-disubstituted thiazoles from terminal alkynes, sulfonyl azides and thionoesters. Org Lett 17:2454–2457. https://doi.org/10.1021/acs.orglett.5b00960

    Article  CAS  PubMed  Google Scholar 

  18. Chen B, Guo S, Guo X, Zhang G, Yu Y (2005) selective access to 4-substituted 2-aminothiazoles and 4-substituted 5-thiocyano-2-aminothiazoles from vinyl azides and potassium thiocyanate switched by palladium and iron catalysts. Org Lett 17:4698–4701. https://doi.org/10.1021/acs.orglett.5b02152

    Article  CAS  Google Scholar 

  19. Tang X, Zhu Z, Qi C, Wu W, Jiang H (2016) Copper-catalyzed coupling of oxime acetates with isothiocyanates: a strategy for 2-aminothiazoles. Org Lett 18:180–183. https://doi.org/10.1021/acs.orglett.5b03188

    Article  CAS  PubMed  Google Scholar 

  20. Castagnolo D, Pagano M, Bernardini M, Botta M (2009) Domino alkylation-cyclization reaction of propargyl bromides with thioureas/thiopyrimidinones: a new facile synthesis of 2-aminothiazoles and 5h-thiazolo[3,2-a]pyrimidin-5-ones. Synlett 13:2093–2096. https://doi.org/10.1055/s-0029-1217700

    Article  CAS  Google Scholar 

  21. Narender M, Reddy MS, Kumar VP, Srinivas B, Sridhar R, Nageswar YVD, Rao KR (2007) Aqueous-phase one-pot synthesis of 2-aminothiazole- or 2-aminoselenazole-5-carboxylates from β-keto esters, thiourea or selenourea, and n-bromo-succinimide under supramolecular catalysis. Synthesis 22:3469–3472. https://doi.org/10.1055/s-2007-990849

    Article  CAS  Google Scholar 

  22. Siddiqui N, Faizarshad M, Khan SA (2009) Synthesis of some new coumarin incorporated thiazolyl semicarbazones as anticonvulsants. Acta Pol Pharm 66:161–167

    CAS  PubMed  Google Scholar 

  23. Rao CHVS, Rao RV (2010) One pot synthesis of 3-[2-(arylamino)thiazol-4-yl]coumarins in a three-component synthesis and a catalyst and solvent-free synthesis on grinding. J Chem Res 1:50–53. https://doi.org/10.3184/030823410X12627991159610

    Article  Google Scholar 

  24. Koti RS, Gundurao K, Vinayak SH (2007) Intramolecular amidation: synthesis of novel thiazole-fused diazepinones. Synth Commun 37:99–105. https://doi.org/10.1080/00397910600978481

    Article  CAS  Google Scholar 

  25. Bhimapaka CR, Gannerla S, Jaladi AK, Balasubramanian S (2011) Facile synthesis of substituted ethyl 2-(chloromethyl)-2-hydroxy-2-h-1-benzopyran-3-carboxylates. Helv Chim Acta 94:248–253. https://doi.org/10.1002/hlca.201000181

    Article  CAS  Google Scholar 

  26. Thibault F, Pascal R, Lise-Marie C, Marc F, Yun L (2017) The unusual ring scission of a quinoxaline-pyran-fused dithiolene system related to molybdopterin. Dalton Trans 46:4161–4164. https://doi.org/10.1039/c7dt00377c

    Article  CAS  Google Scholar 

  27. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C Struct Chem 71:3–8. https://doi.org/10.1107/s2053229614024218

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the authorities of Jawaharlal Nehru Technological University Hyderabad for providing laboratory facilities. One of the authors (KK) is thankful to the University for financial support in the form of Lectureship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kotthireddy Kavitha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavitha, K., Srikrishna, D., Sridhar, B. et al. An unusual synthesis of 3-(2-(arylamino)thiazol-4-yl)-2H-chromen-2-ones from ethyl 2-(chloromethyl)-2-hydroxy-2H-chromene-3-carboxylate via benzopyran ring opening. Mol Divers 23, 443–452 (2019). https://doi.org/10.1007/s11030-018-9880-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9880-x

Keywords

Navigation