Skip to main content

Advertisement

Log in

Dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-4-ones as a new class of CK2 inhibitors

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Identification of new small molecules inhibiting protein kinase CK2 is highly required for the study of this protein’s functions in cell and for the further development of novel pharmaceuticals against a variety of disorders associated with CK2 activity. In this article, a virtual screening of a random small-molecule library was performed and 12 compounds were initially selected for biochemical tests toward CK2. Among them, the most active compound 1 (\(\hbox {IC}_{50} = 6.8\,\upmu \hbox {M}\)) belonged to dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-4-ones. The complex of this compound with CK2 was analyzed, and key ligand–enzyme interactions were determined. Then, a virtual screening of 231 dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-4-one derivatives was performed and 37 compounds were chosen for in vitro testing. It was found that 32 compounds inhibit CK2 with \(\hbox {IC}_{50}\) values from 2.5 to 7.5 \(\upmu \hbox {M}\). These results demonstrate that dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-4-one is a novel class of CK2 inhibitors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

References

  1. Faust M, Montenarh M (2000) Subcellular localization of protein kinase CK2. A key to its function? Cell Tissue Res 301:329–340

    Article  CAS  Google Scholar 

  2. Litchfield DW (2003) Protein kinase CK2: structure, regulation and role in cellular decisions of life and death. Biochem J 369:1–15. https://doi.org/10.1042/bj20021469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Salvi M, Sarno S, Cesaro L, Nakamura H, Pinna LA (2009) Extraordinary pleiotropy of protein kinase CK2 revealed by weblogo phosphoproteome analysis. Biochim Biophys Acta 1793:847–859. https://doi.org/10.1016/j.bbamcr.2009.01.013

    Article  CAS  PubMed  Google Scholar 

  4. Guerra B, Issinger O-G (2008) Protein kinase CK2 in human diseases. Curr Med Chem 15:1870–1886

    Article  CAS  Google Scholar 

  5. Tawfic S, YuS WH, Faust R, Davis A, Ahmed K (2001) Protein kinase CK2 signal in neoplasia. Histol Histopathol 16:573–582

    CAS  PubMed  Google Scholar 

  6. Chua M, Ortega C, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn K, Dominguez I (2017) CK2 in cancer: cellular and biochemical mechanisms and potential therapeutic target. Pharmaceuticals 10:18. https://doi.org/10.3390/ph10010018

    Article  CAS  PubMed Central  Google Scholar 

  7. Sapelkin VM, Lukashov SS, Golub AG, Bdzhola VG, Yakovenko OYa, Yarmoluk SM, Dubinina GG (2004) Application of 4-substituted 3-carboxyquinolines as protein kinase CK2 inhibitors. UA Patent UA68984 A, C07D215/00

  8. Golub AG, Yakovenko OYa, Yarmoluk SM, Dubinina GG, Bdzhola VG, Prykhod’ko AO (2004) Application of 4,5,6,7-tetrahalogeno-1,3-isoindolinediones as protein kinase CK2 inhibitors. UA Patent UA69165 A, C07D215/00

  9. Golub AG, Yakovenko OY, Prykhod’ko AO, Lukashov SS, Bdzhola VG, Yarmoluk SM (2008) Evaluation of 4,5,6,7-tetrahalogeno-\(1H\)-isoindole-1,3(2\(H\))-diones as inhibitors of human protein kinase CK2. Biochim Biophys Acta 1784:143–149. https://doi.org/10.1016/j.bbapap.2007.10.009

    Article  CAS  PubMed  Google Scholar 

  10. Alchab F, Ettouati L, Bouaziz Z, Bollacke A, Delcros J-G, Gertzen C, Gohlke H, Pinaud N, Marchivie M, Guillon J, Fenet B, Jose J, Borgne M (2015) Synthesis, biological evaluation and molecular modeling of substituted indeno[1,2-\(b\)]indoles as inhibitors of human protein kinase CK2. Pharmaceuticals 8:279–302. https://doi.org/10.3390/ph8020279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jabor Gozzi G, Bouaziz Z, Winter E, Daflon-Yunes N, Aichele D, Nacereddine A, Marminon C, Valdameri G, Zeinyeh W, Bollacke A, Guillon J, Lacoudre A, Pinaud N, Cadena S, Jose J, Le Borgne M, Di Pietro A (2015) Converting potent indeno[1,2-\(b\)]indole inhibitors of protein kinase CK2 into selective inhibitors of the breast cancer resistance protein ABCG2. J Med Chem 58:265–277. https://doi.org/10.1021/jm500943z

    Article  CAS  PubMed  Google Scholar 

  12. Haddach M, Tran JA, Pierre F, Regan CF, Raffaele N, Ravula S, Ryckman DM (2016) Pyrazolopyrimidines and related heterocycles as CK2 inhibitors. US Patent US9303033 B2

  13. Ostrynska OV, Balanda AO, Bdzhola VG, Golub AG, Kotey IM, Kukharenko OP, Gryshchenko AA, Briukhovetska NV, Yarmoluk SM (2016) Design and synthesis of novel protein kinase CK2 inhibitors on the base of 4-aminothieno[2,3-\(d\)]pyrimidines. Eur J Med Chem 115:148–160. https://doi.org/10.1016/j.ejmech.2016.03.004

    Article  CAS  PubMed  Google Scholar 

  14. Golub AG, Bdzhola VG, Briukhovetska NV, Balanda AO, Kukharenko OP, Kotey IM, Ostrynska OV, Yarmoluk SM (2011) Synthesis and biological evaluation of substituted (thieno[2,3-\(d\)]pyrimidin-4-ylthio)carboxylic acids as inhibitors of human protein kinase CK2. Eur J Med Chem 46:870–876. https://doi.org/10.1016/j.ejmech.2010.12.025

    Article  CAS  PubMed  Google Scholar 

  15. Liu Z, Zhang R, Meng Q, Zhang X, Sun Y (2016) Discovery of new protein kinase CK2 inhibitors with 1,3-dioxo-2,3-dihydro-1\(H\)-indene core. Med Chem Commun 7:1352–1355. https://doi.org/10.1039/C6MD00189K

    Article  CAS  Google Scholar 

  16. Ohno H, Minamiguchi D, Nakamura S, Shu K, Okazaki S, Honda M, Misu R, Moriwaki H, Nakanishi S, Oishi S, Kinoshita T, Nakanishi I, Fujii N (2016) Structure-activity relationship study of 4-(thiazol-5-yl)benzoic acid derivatives as potent protein kinase CK2 inhibitors. Bioorg Med Chem 24:1136–1141. https://doi.org/10.1016/j.bmc.2016.01.043

    Article  CAS  PubMed  Google Scholar 

  17. Baier A, Galicka A, Nazaruk J, Szyszka R (2017) Selected flavonoid compounds as promising inhibitors of protein kinase CK2\(\alpha \) and CK2\(\alpha \)’, the catalytic subunits of CK2. Phytochemistry 136:39–45. https://doi.org/10.1016/j.phytochem.2016.12.018

    Article  CAS  PubMed  Google Scholar 

  18. Golub AG, Bdzhola VG, Ostrynska OV, Kyshenia IV, Sapelkin VM, Prykhod’ko AO, Kukharenko OP, Yarmoluk SM (2013) Discovery and characterization of synthetic 4’-hydroxyflavones-New CK2 inhibitors from flavone family. Bioorg Med Chem 21:6681–6689. https://doi.org/10.1016/j.bmc.2013.08.013

    Article  CAS  PubMed  Google Scholar 

  19. Golub AG, Bdzhola VG, Kyshenia YV, Sapelkin VM, Prykhod’ko AO, Kukharenko OP, Ostrynska OV, Yarmoluk SM (2011) Structure-based discovery of novel flavonol inhibitors of human protein kinase CK2. Mol Cell Biochem 356:107–115. https://doi.org/10.1007/s11010-011-0945-8

    Article  CAS  PubMed  Google Scholar 

  20. Cozza G (2017) The development of CK2 inhibitors: from traditional pharmacology to in silico rational drug design. Pharmaceuticals 10:26. https://doi.org/10.3390/ph10010026

    Article  CAS  PubMed Central  Google Scholar 

  21. AutoDock 4.2 User Guide. http://autodock.scripps.edu/faqs-help/manual/autodock-4-2-user-guide

  22. Pedretti A, Villa L, Vistoli G (2004) VEGA-an open platform to develop chemo-bio-informatics applications, using plug-in architecture and script programming. J Comput Aided Mol Des 18:167–173. https://doi.org/10.1023/B:JCAM.0000035186.90683.f2

    Article  CAS  PubMed  Google Scholar 

  23. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferguson AD, Sheth PR, Basso AD, Paliwal S, Gray K, Fischmann TO, Le HV (2011) Structural basis of CX-4945 binding to human protein kinase CK2. FEBS Lett 585:104–10. https://doi.org/10.1016/j.febslet.2010.11.019

    Article  CAS  PubMed  Google Scholar 

  25. BIOVIA Discovery Studio Visualizer. http://accelrys.com/

  26. Starosyla SA, Volynets GP, Bdzhola VG, Golub AG, Yarmoluk SM (2014) Pharmacophore approaches in protein kinase inhibitors design. World J Pharmacol 3:162. https://doi.org/10.5497/wjp.v3.i4.162

    Article  Google Scholar 

  27. Hastie CJ, McLauchlan HJ, Cohen P (2006) Assay of protein kinases using radiolabeled ATP: a protocol. Nat Protoc 1:968–971. https://doi.org/10.1038/nprot.2006.149

    Article  CAS  PubMed  Google Scholar 

  28. Sirko SM, Gorobets NY, Musatov VI, Desenko SM (2009) Generation of 500-member library of 10-alkyl-2-\(\text{ R }^{1}\),3-\(\text{ R }^{2}\)-4,10-dihydrobenzo[4,5]imidazo[1,2-\(a\)]pyrimidin-4-ones. Molecules 14:5223–5234. https://doi.org/10.3390/molecules14125223

    Article  CAS  PubMed  Google Scholar 

  29. Vodolazhenko MA, Mykhailenko AE, Gorobets NY, Desenko SM (2017) One-pot synthesis of benzo[4,5]imidazo[1,2-\(a\)]pyridine derivatives in aqueous conditions: one-pot synthesis of benzo[4,5]imidazo[1,2-\(a\)]pyridine derivatives in aqueous conditions aqueous synthesis. J Heterocycl Chem 54:753–757. https://doi.org/10.1002/jhet.2617

    Article  CAS  Google Scholar 

  30. Zhang M-Z, Zhang R-R, Yin W-Z, Yu X, Zhang Y-L, Liu P, Gu Y-C, Zhang W-H (2016) Microwave-assisted synthesis and antifungal activity of coumarin[8,7-\(e\)][1,3]oxazine derivatives. Mol Divers 20:611–618. https://doi.org/10.1007/s11030-016-9662-2

    Article  CAS  PubMed  Google Scholar 

  31. Orlov VD, Getmanskii NV, Oksenich IA, Iksanova SV (1991) Substituted 1,10b-dihydro-5H-pyrazolo[1,5-c]-1,3-benzoxazines. Chem Heterocycl Comp 27:910–914. https://doi.org/10.1007/BF00472299

    Article  Google Scholar 

  32. Desenko SM, Getmanskii NV, Chernenko VN, Zemlin IM, Shishkin OV, Orlov VD (1999) Aryl-substituted 1,10\(b\)-dihydro-5H-pyrazolo[1,5-\(c\)]-1,3-benzoxazines. Chem Heterocycl Comp 35:716–721. https://doi.org/10.1007/BF02251632

    Article  CAS  Google Scholar 

  33. Chebanov VA, Sakhno YI, Desenko SM, Chernenko VN, Musatov VI, Shishkina SV, Shishkin OV, Kappe CO (2007) Cyclocondensation reactions of 5-aminopyrazoles, pyruvic acids and aldehydes. Multicomponent approaches to pyrazolopyridines and related products. Tetrahedron 63:1229–1242. https://doi.org/10.1016/j.tet.2006.11.048

    Article  CAS  Google Scholar 

  34. Bhuyan PJ, Lekhok KC, Sandhu JS (1999) Studies on iracils: synthesis of tetrazolo[4’,5’:1,6]pyrido[2,3-\(d\)]pyrimidines by the action of cyano stabilised carbanions on 6-azido-5-formyluracils. J Chem. https://doi.org/10.1039/a808470j

    Article  Google Scholar 

  35. Tetko IV, Tanchuk VY (2002) Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. J Chem Inf Comput Sci 42:1136–1145

    Article  CAS  Google Scholar 

  36. The Online Chemical Modeling Environment. https://ochem.eu

Download references

Acknowledgements

We thank to Dr. Yana I. Sakhno and Dr. Vitaliy N. Chernenko for granting their substances for this study. Virtual screening and biochemical tests were supported by a Grant from the National Academy of Sciences of Ukraine 10112U004110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergiy M. Yarmoluk.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Protopopov, M.V., Ostrynska, O.V., Starosyla, S.A. et al. Dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-4-ones as a new class of CK2 inhibitors. Mol Divers 22, 991–998 (2018). https://doi.org/10.1007/s11030-018-9836-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-018-9836-1

Keywords

Navigation