Skip to main content

Advertisement

Log in

Synthesis of functionalized dihydro-2-oxopyrroles using graphene oxide as heterogeneous catalyst

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A mild, efficient synthetic approach for the synthesis of highly functionalized dihydro-2-oxopyrroles is developed by using graphene oxide, a readily available and inexpensive material, as an eco-benign solid acid catalyst in ethanol at room temperature. The present methodology displays several advantages such as practical simplicity, high atom economy, easy workup procedure, and high yields of the products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Scheme 3
Fig. 5
Scheme 4

Similar content being viewed by others

References

  1. Isaac-García J, Dobado JA, Calvo-Flores FG, Martínez-García H (2016) Green chemistry. In: Experimental organic chemistry, Laboratory manual, 1st edn. Academic Press, pp 409–415. https://doi.org/10.1016/B978-0-12-803893-2.50012-7

  2. Dunn PJ (2012) The importance of green chemistry in process research and development. Chem Soc Rev 41:1452–1461. https://doi.org/10.1039/c1cs15041c

    Article  PubMed  CAS  Google Scholar 

  3. Rotstein BH, Zaretsky S, Rai V, Yudin AK (2014) Small heterocycles in multicomponent reactions. Chem Rev 114:8323–8359. https://doi.org/10.1021/cr400615v

    Article  PubMed  CAS  Google Scholar 

  4. Liju W, Maimaiyi Z, Yong Ting L (2014) CeCl\(_{3}\)-promoted one-pot synthesis of multisubstituted bispyrano[2,3-\(c\)]pyrazole derivatives. Monatsh Chem 145:491–496. https://doi.org/10.1007/s00706-013-1104-6

    Article  CAS  Google Scholar 

  5. Feng J, Ablajan K, Sali A (2014) 4-Dimethylaminopyridine-catalyzed multi-component one-pot reactions for the convenient synthesis of spiro[indoline-3,\(4^{\prime }\)-pyrano[2,3-c]pyrazole] derivatives. Tetrahedron 70:484–489. https://doi.org/10.1016/j.tet.2013.11.019

    Article  CAS  Google Scholar 

  6. Shiraki R, Sumino A, Tadano KI, Ogawa S (1996) Total synthesis of natural PI-091, a new platelet aggregation inhibitor of microbial origin. J Org Chem 61:284–285. https://doi.org/10.1021/jo951897z

    Article  Google Scholar 

  7. Uchiro H, Shionozaki N, Tanaka R, Kitano H, Iwamura N (2013) First total synthesis of oteromycin utilizing one-pot four-step cascade reaction strategy. Tetrahedron Lett 54:506–511. https://doi.org/10.1016/j.tetlet.2012.11.073

    Article  CAS  Google Scholar 

  8. Uchida K, Ogawa T, Yasuda Y, Mimura H, Fujimoto T, Fukuyama T, Wakimoto T, Asakawa T, Hamashima Y, Kan T (2012) Stereocontrolled total synthesis of (+)-UCS1025A. Angew Chem Int Ed 51:12850–12853. https://doi.org/10.1002/anie.201207800

    Article  CAS  Google Scholar 

  9. Uesugi S, Fujisawa N, Yoshida J, Watanabe M, Dan S, Yamori T, Shiono Y, Kimura K (2016) Pyrrocidine A, a metabolite of endophytic fungi, has a potent apoptosis-inducing activity against HL60 cells through caspase activation via the Michael addition. J Antibiot 69:133–40. https://doi.org/10.1038/ja.2015.103

    Article  PubMed  CAS  Google Scholar 

  10. Chen J, Huang PQ, Queneau Y (2009) Enantioselective synthesis of the R-enantiomer of the feeding deterrent (S)-Ypaoamide. J Org Chem 74:7457–7463. https://doi.org/10.1021/jo901557h

    Article  PubMed  CAS  Google Scholar 

  11. Watanabe T, Miyake M, Shimizu T, Kamezawa M, Masutomi N, Shimura T, Ohashi R (2015) Utility of bilirubins and bile acids as endogenous biomarkers for the inhibition of hepatic transporters. Drug Metab Dispos 43(4):459–466. https://doi.org/10.1124/dmd.114.061051

    Article  PubMed  CAS  Google Scholar 

  12. Li B, Lyle MPA, Chen G, Li J, Hu K, Tang L, Alaui-Jamali MA, Webster J (2007) Substituted 6-amino-4H-[1,2]dithiolo[4,3-b]pyrrol-5-ones: Synthesis, structure-activity relationships, and cytotoxic activity on selected human cancer cell lines. Bioorg Med Chem 15:4601–4608. https://doi.org/10.1016/j.bmc.2007.04.017

    Article  PubMed  CAS  Google Scholar 

  13. Zhang L, Tan Y, Wang NX, Wu QY, Xi Z, Yang GF (2010) Design, syntheses and 3D-QSAR studies of novel N-phenyl pyrrolidin-2-ones and N-phenyl-1H-pyrrol-2-ones as protoporphyrinogen oxidase inhibitors. Bioorg Med Chem 18:7948–7956. https://doi.org/10.1016/j.bmc.2010.09.036

    Article  PubMed  CAS  Google Scholar 

  14. Ma K, Wang P, Fu W, Wan X, Zhou L, Chu Y, Ye D (2011) Rational design of 2-pyrrolinones as inhibitors of HIV-1 integrase. Bioorg Med Chem Lett 21:6724–6727. https://doi.org/10.1016/j.bmcl.2011.09.054

    Article  PubMed  CAS  Google Scholar 

  15. Gein V, Kasimova N, Panina M, Voronina E (2006) Synthesis and antibacterial activity of 1-(5-aryl-4-benzoyl-3-hydroxy-2-oxo-3-pyrrolin-1-yl)-2-(3-benzoyl-methylene-2-oxopiperazin-1-yl)ethanes. Pharm Chem J 40:410–412. https://doi.org/10.1007/s11094-006-0140-5

    Article  CAS  Google Scholar 

  16. Gao Y, Shirai M, Sato F (1997) Synthesis of 1,5-dihydro-2H-pyrrol-2-ones from an alkyne, an imine and carbon dioxide via an organotitanium intermediate. Tetrahedron Lett 38:6849–6852. https://doi.org/10.1016/S0040-4039(97)01615-8

    Article  CAS  Google Scholar 

  17. Luo Y, Lu X, Ye Y, Guo Y, Jiang H, Zeng W (2012) Pd-catalyzed tandem cyclization of ethyl glyoxalate and amines: rapid assembly of highly substituted cyclic dehydro-\(\alpha \)-amino acid derivatives. Org Lett 14:5640–5643. https://doi.org/10.1021/ol302483f

    Article  PubMed  CAS  Google Scholar 

  18. Berger D, Imhof W (2000) Ruthenium catalyzed one-pot synthesis of dihydro-pyrrol-2-one derivatives from \(\alpha \),\(\beta \)-unsaturated Imines, carbon monoxide and ethylene. Tetrahedron 56:2015–2023. https://doi.org/10.1016/S0040-4020(00)00118-6

    Article  CAS  Google Scholar 

  19. Mandal SB, Achar B (1992) Ultrasound assisted reaction of amines with methyl pyruvate: synthesis of substituted 2-oxo-3-pyrrolines. Indian J Chem B 31:357–358

    Google Scholar 

  20. Gein VL, Shumilovskikh EV, Voronina EV, Gein LF, Khokhryakova NP, Tendryakova SP, Vyaznikova NG, Andreichikov YS (1998) Synthesis and reaction with oxalyl chloride of ethyl 1-Aryl-4, 5-dioxo-2-pyrrolidinecarboxylates and their 3-arylamino derivatives. Russ J Gen Chem 68:1267–1270

    CAS  Google Scholar 

  21. Yavari I, Sanandaj AM, Moradi L, Mirzaei A (2008) Reaction of benzoyl chlorides with Huisgen’s zwitterion: synthesis of functionalized 2,5-dihydro-1H-pyrroles and tetrasubstituted furans. Tetrahedron 64:5221–5225. https://doi.org/10.1016/j.tet.2008.03.044

    Article  CAS  Google Scholar 

  22. Demir AS, Emrullahoglu M, Ardahan G (2007) New approaches to polysubstituted pyrroles and pyrrolinones from \(\alpha \)-cyanomethyl-\(\beta \)-ketoesters. Tetrahedron 63:461–468. https://doi.org/10.1016/j.tet.2006.10.054

    Article  CAS  Google Scholar 

  23. Khan AT, Ghosh A, Khan MM (2012) One-pot four-component domino reaction for the synthesis of substituted dihydro-2-oxypyrrole catalyzed by molecular iodine. Tetrahedron Lett 53:2622–2626. https://doi.org/10.1016/j.tetlet.2012.03.046

    Article  CAS  Google Scholar 

  24. Rana S, Brown M, Dutta A, Bhaumik A, Mukhopadhyay C (2013) Site-selective multicomponent synthesis of densely substituted 2-oxo dihydropyrroles catalyzed by clean, reusable, and heterogeneous TiO2 nanopowder. Tetrahedron Lett 54:1371–1379. https://doi.org/10.1016/j.tetlet.2012.12.109

    Article  CAS  Google Scholar 

  25. Sajadikhah SS, Maghsoodlou MT (2014) A simple and green approach for the synthesis of polyfunctionalized mono-and bis-dihydro-2-oxopyrroles catalyzed by trityl chloride. RSC Adv 4:43454–43459. https://doi.org/10.1039/c4ra06923d

    Article  CAS  Google Scholar 

  26. Sun J, Wu Q, Xia EY, Yan CG (2011) Molecular diversity of three-component reactions of aromatic aldehydes, arylamines, and acetylenedicarboxylates. Eur J Org Chem 16:2981–2986. https://doi.org/10.1007/s11030-014-9512-z

    Article  CAS  Google Scholar 

  27. Gao H, Sun J, Yan CG (2013) Synthesis of functionalized 2-pyrrolidinones via domino reactions of arylamines, ethyl glyoxylate and acetylenedicarboxylates. Tetrahedron 69:589–594. https://doi.org/10.1016/j.tet.2012.11.018

    Article  CAS  Google Scholar 

  28. Lv L, Zheng S, Cai X, Chen Z, Zhu Q, Liu S (2013) Development of four-component synthesis of tetra- and pentasubstituted polyfunctional dihydropyrroles: free permutation and combination of aromatic and aliphatic amines. ACS Comb Sci 15:183–192. https://doi.org/10.1021/co300148c

    Article  PubMed  CAS  Google Scholar 

  29. Sajadikhah SS, Hazeri N, Maghsoodlou MT, Habibi-Khorassani SM (2013) Facile one-pot synthesis of substituted dihydropyrrol-2-ones via four-component domino reaction of amines, dialkyl acetylenedicarboxylates and formaldehyde. J Chin Chem Soc 60:1003–1006. https://doi.org/10.1002/jccs.201200597

    Article  CAS  Google Scholar 

  30. Mirjalili BF, Zare Reshquiyea R (2015) BF\(_{3}/\)nano-sawdust as a green, biodegradable and no expensive catalyst for synthesis of highly substituted dihydro-2-oxopyrroles. RSC Adv 5:15566–15571. https://doi.org/10.1039/C4RA16625F

    Article  CAS  Google Scholar 

  31. Sajadikhah SS, Maghsoodlou MT, Hazeri N (2014) A simple and efficient approach to one-pot synthesis of mono-and bis-N-aryl-3-aminodihydropyrrol-2-one-4-carboxylates catalyzed by InCl\(_{3}\). Chin Chem Lett 25:58–60. https://doi.org/10.1016/j.cclet.2013.10.010

    Article  CAS  Google Scholar 

  32. Zhu Q, Jiang H, Li J, Liu S, Xia C, Zhang M (2009) Concise and versatile multicomponent synthesis of multisubstituted polyfunctional dihydropyrroles. J Comb Chem 11:685–696. https://doi.org/10.1021/cc900046f

    Article  PubMed  CAS  Google Scholar 

  33. Sajadikhah SS, Hazeri N (2014) Coupling of amines, dialkyl acetylenedicarboxylates and formaldehyde promoted by [n-Bu\(_{4}\)N][HSO\(_{4}\)]: an efficient synthesis of highly functionalized dihydro-2oxopyrroles and bis-dihydro-2-oxopyrroles. Res Chem Intermed 40:737–748. https://doi.org/10.1007/s11164-012-0998-7

    Article  CAS  Google Scholar 

  34. Hazeri N, Sajadikhah SS, Maghsoodlou MT, Mohamadian-Souri S, Norouzia M, Moein M (2014) An efficient one-pot access to substituted dihydropyrrol-2-one derivatives using sucrose as natural, biodegradable and inexpensive catalyst. J Chin Chem Soc 61:217–220. https://doi.org/10.1002/jccs.201300311

    Article  CAS  Google Scholar 

  35. Sajadikhah SS, Hazeri N, Maghsoodlou MT, Habibi-Khorassani SM, Beigbabaei A, Willis AC (2013) Al(H\(_{2}\)PO\(_{4}\))\(_{3}\) as an efficient and reusable catalyst for the multi-component synthesis of highly functionalized piperidines and dihydro-2-oxypyrroles. J Iran Chem Soc 10:863–871. https://doi.org/10.1007/s13738-013-0222-8

    Article  CAS  Google Scholar 

  36. Zhang JN, Yang XH, Guo WJ, Wang B, Zhang ZH (2017) Magnetic metal-organic framework CoFe\(_{2}\)O\(_{4}@\)SiO\(_{2}@\)IRMOF-3 as an efficient catalyst for one-pot synthesis of functionalized dihydro-2-oxopyrroles. Synlett 28:734–740. https://doi.org/10.1055/s-0036-1588924

    Article  CAS  Google Scholar 

  37. Nickraftar M, Najafi Hajivar N, Aboonajmi J, Fereidooni E (2016) Nano Fe\(_{3}\)O\(_{4}\) as a magnetically recyclable, powerful, and stable catalyst for the multi-component synthesis of highly functionalized dihydro-2-oxopyrroles. Res Chem Intermed 42:2899–2908. https://doi.org/10.1007/s11164-015-2185-0

    Article  CAS  Google Scholar 

  38. Srivastava SK, Pionteck J (2015) Recent advances in preparation, structure, properties and applications of graphite oxide. J Nanosci Nanotechnol 15:1984–2000. https://doi.org/10.1166/jnn.2015.10047

    Article  PubMed  CAS  Google Scholar 

  39. Mirza-Aghayan M, Tavana MM, Boukherroub R (2016) Sulfonated reduced graphene oxide as a highly efficient catalyst for direct amidation of carboxylic acids with amines using ultrasonic irradiation. Ultrason Sonochem 29:371–379. https://doi.org/10.1016/j.ultsonch.2015.10.009

    Article  PubMed  CAS  Google Scholar 

  40. Mirza-Aghayan M, Zonoubi S, Tavana MM, Boukherroub R (2015) Ultrasound assisted direct oxidative esterification of aldehydes and alcohols using graphite oxide and Oxone. Ultrason Sonochem 22:359–364. https://doi.org/10.1016/j.ultsonch.2014.05.012

    Article  PubMed  CAS  Google Scholar 

  41. Gupta A, Kour D, Gupta VK, Kapoor KK (2016) Graphene oxide mediated solvent-free three component reaction for the synthesis of 1-amidoalkyl-2-naphthols and 1, 2-dihydro-1-arylnaphth [1, 2-e][1, 3] oxazin-3-ones. Tetrahedron Lett 57:4869–4872. https://doi.org/10.1016/j.tetlet.2016.09.067

    Article  CAS  Google Scholar 

  42. Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796. https://doi.org/10.1039/c1cs15172j

    Article  PubMed  CAS  Google Scholar 

  43. Mirza-Aghayan M, Alizadeh M, Tavana MM, Boukherroub R (2014) Graphite oxide: a simple and efficient solid acid catalyst for the ring-opening of epoxides by alcohols. Tetrahedron Lett 55:6694–6697. https://doi.org/10.1016/j.tetlet.2014.10.050

    Article  CAS  Google Scholar 

  44. Wang Y, Sang R, Zheng Y, Guo L, Guan M, Wu Y (2017) Graphene oxide: an efficient recyclable solid acid for the synthesis of bis(indolyl)methanes from aldehydes and indoles in water. Catal Commun 89:138–142. https://doi.org/10.1016/j.catcom.2016.09.027

    Article  CAS  Google Scholar 

  45. Mallakpour S, Abdolmaleki A, Karshenas A (2017) Graphene oxide supported copper coordinated amino acids as novel heterogeneous catalysts for epoxidation of norbornene. Catal Commun 92:109–113. https://doi.org/10.1016/j.catcom.2017.01.017

    Article  CAS  Google Scholar 

  46. Zhang M, Liu P, Liu YH, Shang ZR, Hu HC, Zhang ZH (2016) Magnetically separable graphene oxide anchored sulfonic acid: a novel, highly efficient and recyclable catalyst for one-pot synthesis of 3,6-di(pyridin-3-yl)-1H-pyrazolo[3,4-\(b\)]pyridine-5-carbonitriles in deep eutectic solvent under microwave irradiation. RSC Adv 6:106160–106170. https://doi.org/10.1039/C6RA19579B

    Article  CAS  Google Scholar 

  47. Zhang M, Liu YH, Shang ZR, Hu HC, Zhang ZH (2017) Supported molybdenum on graphene oxide/Fe\(_{3}\)O\(_{4}\): an efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation. Catal Commun 88:39–44. https://doi.org/10.1016/j.catcom.2016.09.028

    Article  CAS  Google Scholar 

  48. Hu M, Yao Z, Wang X (2017) Graphene-based nanomaterials for catalysis. Ind Eng Chem Res 56:3477–3502. https://doi.org/10.1021/acs.iecr.6b0504

    Article  CAS  Google Scholar 

  49. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  50. Mirza-Aghayan M, Tavana MM, Boukherroub R (2015) Palladium nanoparticles supported on reduced graphene oxide as an efficient catalyst for the reduction of benzyl alcohol compounds. Catal Commun 69:97–103. https://doi.org/10.1016/j.catcom.2015.05.023

    Article  CAS  Google Scholar 

  51. Pojer PM, Rae ID (1970) Reactions of methylamine and aniline with methyl pyruvate. Aust J Chem 23:413–418. https://doi.org/10.1071/CH9700413

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Persian Gulf University Research Council for partial support of this study and the University of Manchester for running some NMRs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khodabakhsh Niknam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 8012 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bavadi, M., Niknam, K. Synthesis of functionalized dihydro-2-oxopyrroles using graphene oxide as heterogeneous catalyst. Mol Divers 22, 561–573 (2018). https://doi.org/10.1007/s11030-017-9809-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9809-9

Keywords

Navigation