Skip to main content
Log in

Identification of potential trypanothione reductase inhibitors among commercially available \(\upbeta \)-carboline derivatives using chemical space, lead-like and drug-like filters, pharmacophore models and molecular docking

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

American trypanosomiasis or Chagas disease caused by the protozoan Trypanosoma cruzi (T. cruzi) is an important endemic trypanosomiasis in Central and South America. This disease was considered to be a priority in the global plan to combat neglected tropical diseases, 2008–2015, which indicates that there is an urgent need to develop more effective drugs. The development of new chemotherapeutic agents against Chagas disease can be related to an important biochemical feature of T. cruzi: its redox defense system. This system is based on trypanothione (\(N^{1}\),\(N^{8}\)-bis(glutathyonil)spermidine) and trypanothione reductase (TR), which are rather unique to trypanosomes and completely absent in mammalian cells. In this regard, tricyclic compounds have been studied extensively due to their ability to inhibit the T. cruzi TR. However, synthetic derivatives of natural products, such as \(\upbeta \)-carboline derivatives (\(\upbeta \)-CDs), as potential TR inhibitors, has received little attention. This study presents an analysis of the structural and physicochemical properties of commercially available \(\upbeta \)-CDs in relation to compounds tested against T. cruzi in previously reported enzymatic assays and shows that \(\upbeta \)-CDs cover chemical space that has not been considered for the design of TR inhibitors. Moreover, this study presents a ligand-based approach to discover potential TR inhibitors among commercially available \(\upbeta \)-CDs, which could lead to the generation of promising \(\upbeta \)-CD candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. WHO (2007) Global plan to combat neglected tropical diseases 2008–2015. World Health Organization (WHO)

  2. Apt BW, Heitmann GI, Jercic LMI, Jofré ML, del Muñoz CVP, Noemí HI, San Martín VAM, Sapunar PJ, Torres HM, Zulantay AI (2008) Guías clínicas de la enfermedad de Chagas 2006: Parte VI. Tratamiento antiparasitario de la enfermedad de Chagas. Revista Chilena de Infectología 25:384–389

    Google Scholar 

  3. WHO (2012) Research priorities for Chagas disease, human African trypanosomiasis and leishmaniasis, vol 975. WHO Technical Report Series

  4. Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A (1985) Trypanothione—a novel bis(glutathionyl)spermidine cofactor for glutathione-reductase in trypanosomatids. Science 227:1485–1487. doi:10.1126/science.3883489

    Article  CAS  PubMed  Google Scholar 

  5. Shames SL, Fairlamb AH, Cerami A, Walsh CT (1986) Purification and characterization of Trypanothione reductase from Crithidia–Fasciculata, a newly discovered member of the family of disulfide-containing Flavoprotein reductases. Biochemistry 25:3519–3526. doi:10.1021/bi00360a007

    Article  CAS  PubMed  Google Scholar 

  6. Chan C, Yin H, Garforth J, McKie JH, Jaouhari R, Speers P, Douglas KT, Rock PJ, Yardley V, Croft SL, Fairlamb AH (1998) Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs. J Med Chem 41:148–156. doi:10.1021/jm960814j

    Article  CAS  PubMed  Google Scholar 

  7. Khan MOF (2007) Trypanothione reductase: a viable chemotherapeutic target for antitrypanosomal and antileishmanial drug design. Drug Target Insights 2:129–146

    PubMed  PubMed Central  Google Scholar 

  8. Marcu A, Schurigt U, Muller K, Moll H, Krauth-Siegel RL, Prinz H (2016) Inhibitory effect of phenothiazine- and phenoxazine-derived chloroacetamides on Leishmania major growth and Trypanosoma brucei trypanothione reductase. Eur J Med Chem 108:436–443. doi:10.1016/j.ejmech.2015.11.023

    Article  CAS  PubMed  Google Scholar 

  9. Iribarne F, Paulino M, Aguilera S, Tapia O (2009) Assaying phenothiazine derivatives as trypanothione reductase and glutathione reductase inhibitors by theoretical docking and molecular dynamics studies. J Mol Graph Model 28:371–381. doi:10.1016/j.jmgm.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  10. Kumar S, Ali MR, Bawa S (2014) Mini review on tricyclic compounds as an inhibitor of trypanothione reductase. J Pharm Bioallied Sci 6:222–228. doi:10.4103/0975-7406.142943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Richardson JL, Nett IRE, Jones DC, Abdille MH, Gilbert IH, Fairlamb AH (2009) Improved tricyclic inhibitors of trypanothione reductase by screening and chemical synthesis. ChemMedChem 4:1333–1340. doi:10.1002/cmdc.200900097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Venkatesan SK, Shukla AK, Dubey VK (2010) Molecular docking studies of selected tricyclic and quinone derivatives on trypanothione reductase of Leishmania infantum. J Comput Chem 31:2463–2475. doi:10.1002/jcc.21538

    CAS  PubMed  Google Scholar 

  13. Horvath D (1997) A virtual screening approach applied to the search for trypanothione reductase inhibitors. J Med Chem 40:2412–2423. doi:10.1021/jm9603781

    Article  CAS  PubMed  Google Scholar 

  14. Galarreta BC, Sifuentes R, Carrillo AK, Sanchez L, Amado MdRI, Maruenda H (2008) The use of natural product scaffolds as leads in the search for trypanothione reductase inhibitors. Bioorg Med Chem 16:6689–6695. doi:10.1016/j.bmc.2008.05.074

    Article  CAS  PubMed  Google Scholar 

  15. Chauhan SS, Pandey S, Shivahare R, Ramalingam K, Krishna S, Vishwakarma P, Siddiqi MI, Gupta S, Goyal N, Chauhan PMS (2015) Novel beta-carboline-quinazolinone hybrid as an inhibitor of Leishmania donovani trypanothione reductase: synthesis, molecular docking and bioevaluation. MedChemComm 6:351–356. doi:10.1039/c4md00298a

    Article  CAS  Google Scholar 

  16. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768. doi:10.1021/ci3001277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. http://pubchem.ncbi.nlm.nih.gov/. Accessed 02 Sept 2016

  18. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:D668–672. doi:10.1093/nar/gkj067

    Article  CAS  PubMed  Google Scholar 

  19. Instant JChem was used for structure database management, search and prediction, Instant JChem 5.12.3, 2013, ChemAxon. http://www.chemaxon.com

  20. https://www.ebi.ac.uk/chembl/. Accessed 02 Sept 2016

  21. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107. doi:10.1093/nar/gkr777

    Article  CAS  PubMed  Google Scholar 

  22. Khan MOF, Austin SE, Chan C, Yin H, Marks D, Vaghjiani SN, Kendrick H, Yardley V, Croft SL, Douglas KT (2000) Use of an additional hydrophobic binding site, the Z site, in the rational drug design of a new class of stronger trypanothione reductase inhibitor, quaternary alkylammonium phenothiazines. J Med Chem 43:3148–3156. doi:10.1021/jm000156+

    Article  CAS  PubMed  Google Scholar 

  23. Benson TJ, McKie JH, Garforth J, Borges A, Fairlamb AH, Douglas KT (1992) Rationally designed selective inhibitors of Trypanothione reductase—phenothiazines and related tricyclics as lead structures. Biochem J 286:9–11. doi:10.1042/bj2860009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pita SSD, Albuquerque MG, Rodrigues CR, Castro HC, Hopfinger AJ (2012) Receptor-dependent 4D-QSAR analysis of peptidemimetic inhibitors of Trypanosoma cruzi trypanothione reductase with receptor-based alignment. Chem Biol Drug Des 79:740–748. doi:10.1111/j.1747-0285.2012.01338.x

    Article  CAS  Google Scholar 

  25. Eberle C, Lauber BS, Fankhauser D, Kaiser M, Brun R, Krauth-Siegel RL, Diederich F (2011) Improved inhibitors of trypanothione reductase by combination of motifs: synthesis, inhibitory potency, binding mode, and antiprotozoal activities. ChemMedChem 6:292–301. doi:10.1002/cmdc.201000420

    Article  CAS  PubMed  Google Scholar 

  26. Jones DC, Ariza A, Chow WHA, Oza SL, Fairlamb AH (2010) Comparative structural, kinetic and inhibitor studies of Trypanosoma brucei trypanothione reductase with T-cruzi. Mol Biochem Parasitol 169:12–19. doi:10.1016/j.molbiopara.2009.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Standardizer was used for structure canonicalization and transformation, JChem 5.12.13, 2013, ChemAxon. http://www.chemaxon.com

  28. Molecular Operating Environment (MOE) (2012) 2012.10; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7

  29. Brown RD, Martin YC (1996) Use of structure-activity data to compare structure-based clustering methods and descriptors for use in compound selection. J Chem Inf Comput Sci 36:572–584. doi:10.1021/ci9501047

    Article  CAS  Google Scholar 

  30. Sheridan RP, Miller MD, Underwood DJ, Kearsley SK (1996) Chemical similarity using geometric atom pair descriptors. J Chem Inf Comput Sci 36:128–136. doi:10.1021/ci950275b

    Article  CAS  Google Scholar 

  31. R Development Core Team (2008). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org

  32. Ghose AK, Viswanadhan VN, Wendoloski JJ (1998) A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1:55–68. doi:10.1021/cc9800071

  33. Muegge I, Heald SL, Brittelli D (2001) Simple selection criteria for drug-like chemical matter. J Med Chem 44:1841–1846. doi:10.1021/jm015507e

  34. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623. doi:10.1021/jm020017n

    Article  CAS  PubMed  Google Scholar 

  35. Oprea TI, Davis AM, Teague SJ, Leeson PD (2001) Is there a difference between leads and drugs? A historical perspective. J Chem Inf Comput Sci 41:1308–1315. doi:10.1021/ci010366a

    Article  CAS  PubMed  Google Scholar 

  36. Jarvis RA, Patrick EA (1973) Clustering using a similarity measure based on shared near neighbors. IEEE Transactions on Computers 22:1025–1034. doi:10.1109/t-c.1973.223640

    Article  Google Scholar 

  37. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519. doi:10.1002/(sici)1096-987x(199604)17:5/6<490::aid-jcc1>3.0.co;2-p

  38. Chan SL, Labute P (2010) Training a scoring function for the alignment of small molecules. J Chem Inf Model 50:1724–1735. doi:10.1021/ci100227h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Labute P, Williams C, Feher M, Sourial E, Schmidt JM (2001) Flexible alignment of small molecules. J Med Chem 44:1483–1490. doi:10.1021/jm0002634

    Article  CAS  PubMed  Google Scholar 

  40. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. doi:10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Molecular Operating Environment (MOE) (2011) CCGI, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7

  42. Zhang Y, Bond CS, Bailey S, Cunningham ML, Fairlamb AH, Hunter WN (1996) The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 Å resolution. Protein Sci 5:52–61. doi:10.1002/pro.5560050107

    Article  PubMed  PubMed Central  Google Scholar 

  43. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662. doi:10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b

  44. Neudert G, Klebe G (2011) fconv: format conversion, manipulation, and feature computation of molecular data. Bioinformatics. doi:10.1093/bioinformatics/btr055

    PubMed  Google Scholar 

  45. Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16:11–26. doi:10.1023/a:1016357811882

    Article  CAS  PubMed  Google Scholar 

  46. Neudert G, Klebe G (2011) DSX: a knowledge-based scoring function for the assessment of protein–ligand complexes. J Chem Inf Model 51:2731–2745. doi:10.1021/ci200274q

    Article  CAS  PubMed  Google Scholar 

  47. Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule–ligand interactions. J Mol Biol 161:269–288. doi:10.1016/0022-2836(82)90153-X

    Article  CAS  PubMed  Google Scholar 

  48. Hann MM, Oprea TI (2004) Pursuing the leadlikeness concept in pharmaceutical research. Curr Opin Chem Biol 8:255–263. doi:10.1016/j.cbpa.2004.04.003

    Article  CAS  PubMed  Google Scholar 

  49. Di L, Kerns EH, Carter GT (2009) Drug-like property concepts in pharmaceutical design. Curr Pharm Des 15:2184–2194. doi:10.2174/138161209788682479

    Article  CAS  PubMed  Google Scholar 

  50. Wunberg T, Hendrix M, Hillisch A, Lobell M, Meier H, Schmeck C, Wild H, Hinzen B (2006) Improving the hit-to-lead process: data-driven assessment of drug-like and lead-like screening hits. Drug Discov Today 11:175–180. doi:10.1016/s1359-6446(05)03700-1

    Article  CAS  PubMed  Google Scholar 

  51. Oprea TI, Allu TK, Fara DC, Rad RF, Ostopovici L, Bologa CG (2007) Lead-like, drug-like or ”pub-like”: How different are they? J Comput Aided Mol Des 21:113–119. doi:10.1007/s10822-007-9105-3

  52. Saravanamuthu A, Vickers TJ, Bond CS, Peterson MR, Hunter WN, Fairlamb AH (2004) Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase—a template for drug design. J Biol Chem 279:29493–29500. doi:10.1074/jbc.M403187200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Beig M, Oellien F, Garoff L, Noack S, Krauth-Siegel RL, Selzer PM (2015) Trypanothione reductase: a target protein for a combined in vitro and in silico screening approach. Plos Negl Trop Dis 9:e0003773. doi:10.1371/journal.pntd.0003773

    Article  PubMed  PubMed Central  Google Scholar 

  54. Persch E, Bryson S, Todoroff NK, Eberle C, Thelemann J, Dirdjaja N, Kaiser M, Weber M, Derbani H, Brun R, Schneider G, Pai EF, Krauth-Siegel RL, Diederich F (2014) Binding to large enzyme pockets: small-molecule inhibitors of trypanothione reductase. ChemMedChem 9:1880–1891. doi:10.1002/cmdc.201402032

    CAS  PubMed  Google Scholar 

  55. Bond CS, Zhang Y, Berriman M, Cunningham ML, Fairlamb AH, Hunter WN (1999) Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure 7:81–89. doi:10.1016/s0969-2126(99)80011-2

    Article  CAS  PubMed  Google Scholar 

  56. Faerman CH, Savvides SN, Strickland C, Breidenbach MA, Ponasik JA, Ganem B, Ripoll D, Luise Krauth-Siegel R, Andrew Karplus P (1996) Charge is the major discriminating factor for glutathione reductase versus trypanothione reductase inhibitors. Bioorg Med Chem 4:1247–1253. doi:10.1016/0968-0896(96)00120-4

    Article  CAS  PubMed  Google Scholar 

  57. Rishton GM (2003) Nonleadlikeness and leadlikeness in biochemical screening. Drug Discov Today 8:86–96. doi:10.1016/S1359644602025722

    Article  CAS  PubMed  Google Scholar 

  58. López-Vallejo F, Giulianotti MA, Houghten RA, Medina-Franco JL (2012) Expanding the medicinally relevant chemical space with compound libraries. Drug Discov Today 17:718–726. doi:10.1016/j.drudis.2012.04.001

    Article  PubMed  Google Scholar 

  59. Chuprina A, Lukin O, Demoiseaux R, Buzko A, Shivanyuk A (2010) Drug- and lead-likeness, target class, and molecular diversity analysis of 7.9 million commercially available organic compounds provided by 29 suppliers. J Chem Inf Model 50:470–479. doi:10.1021/ci900464s

    Article  CAS  PubMed  Google Scholar 

  60. Turner DB, Tyrrell SM, Willett P (1997) Rapid quantification of molecular diversity for selective database acquisition. J Chem Inf Comput Sci 37:18–22. doi:10.1021/ci960463h

    Article  CAS  Google Scholar 

  61. Medina-Franco JL, Yongye AB, Lopez-Vallejo F (2012) Consensus models of activity landscapes. In: Dehmer M, Varmuza K, Bonchev D (eds) Statistical modelling of molecular descriptors in QSAR/QSPR. Wiley, New York

    Google Scholar 

  62. Byler KG, Brito-Arias M, Marquez-Navarro A, Nogueda-Torres B, Torres-Bustillos LG, Martínez-Mayorga K (2012) Identification of benzoylisoquinolines as potential anti-Chagas agents. Bioorg Med Chem 20:2587–2594. doi:10.1016/j.bmc.2012.02.046

    Article  CAS  PubMed  Google Scholar 

  63. Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46:2287–2303. doi:10.1021/jm0203783

    Article  CAS  PubMed  Google Scholar 

  64. Wang RX, Wang SM (2001) How does consensus scoring work for virtual library screening? An idealized computer experiment. J Chem Inf Comput Sci 41:1422–1426. doi:10.1021/ci010025x

    Article  CAS  PubMed  Google Scholar 

  65. Olmos I (2012) Diseño Racional de \(\beta \)-carbolinas como potenciales inhibidores de Tripanotión Reductasa. Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile

  66. Martínez Ortega RM, Tuya Pendás LC, Martínez Ortega M, Pérez Abreu A, Cánovas AM (2009) El coeficiente de correlacion de los rangos de spearman caracterizacion. Revista Habanera de Ciencias Médicas 8:0–0

    Google Scholar 

  67. Parveen S, Khan MOF, Austin SE, Croft SL, Yardley V, Rock P, Douglas KT (2005) Antitrypanosomal, antileishmanial, and antimalarial activities of quaternary arylalkylammonium 2-amino-4-chlorophenyl phenyl sulfides, a new class of trypanothione reductase inhibitor, and of N-acyl derivatives of 2-amino-4-chlorophenyl phenyl sulfide. J Med Chem 48:8087–8097. doi:10.1021/jm050819t

  68. Da Rocha Pita SS, Batista PR, Albuquerque MG, Pascutti PG (2012) Molecular dynamics simulations of peptide inhibitors complexed with Trypanosoma cruzi trypanothione reductase. Chem Biol Drug Des 80:561–571. doi:10.1111/j.1747-0285.2012.01429.x

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by FONDECYT-11100308 (Comisión Nacional de Investigación Científica y Tecnológica, CONICYT, Chile). The authors thank FIBE 15/10 (Direccion de Investigacion - UMCE, DIUMCE, Chile), the MYS I/26 2013 Project (DIUMCE, Chile) and FONDECYT-11110421 (CONICYT, Chile).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge Rodríguez-Becerra or Lizethly Cáceres-Jensen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 661 KB)

Supplementary material 2 (docx 2455 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Becerra, J., Cáceres-Jensen, L., Hernández-Ramos, J. et al. Identification of potential trypanothione reductase inhibitors among commercially available \(\upbeta \)-carboline derivatives using chemical space, lead-like and drug-like filters, pharmacophore models and molecular docking. Mol Divers 21, 697–711 (2017). https://doi.org/10.1007/s11030-017-9747-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9747-6

Keywords

Navigation