Skip to main content

Advertisement

Log in

A facile, efficient, and sustainable chitosan/CaHAp catalyst and one-pot synthesis of novel 2,6-diamino-pyran-3,5-dicarbonitriles

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A simple and versatile one-pot three-component synthetic protocol is devised for heterocycles, viz. 2,6-diamino-4-substituted-4H-pyran-3,5-dicarbonitrile derivatives, in short reaction times (\(\approx \)30 min) at room temperature using ethanol as a solvent. This method involves the three-component reaction of malononitrile, substituted aldehydes, and cyanoacetamide catalyzed by chitosan-doped calcium hydroxyapatites (CS/CaHAps) giving good to excellent yields (86–96%). Twelve new pyran derivatives (4al) were synthesized and their structures were established and confirmed by different spectroscopic methods (\(^{1}\)H NMR, \(^{13}\)C NMR, \(^{15}\)N NMR, and HRMS). The heterogeneous catalyst, CS/CaHAp, was characterized by various instrumental techniques including XRD, TEM, SEM, and FT-IR and TGA spectroscopies. The catalyst was easily separable and reusable for up to six runs without any apparent loss of activity. The reported protocol has many benefits, such as ease of preparation, use of a green solvent, reduced reaction times, excellent product yields, and operational simplicity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2
Fig. 5

References

  1. Manoj BG, Vasco DBB, Rafael L, Paula SB, Rajender SV (2013) Benign by design: catalyst-free in-water, on-water green chemical methodologies in organic synthesis. Chem Soc Rev 42:5522–5551. doi:10.1039/c3cs60025d

    Article  Google Scholar 

  2. D’Souza DM, Muller TJJ (2007) Multi-component syntheses of heterocycles by transition-metal catalysis. Chem Soc Rev 36:1095–1108. doi:10.1039/b608235c

    Article  PubMed  Google Scholar 

  3. Cioc RC, Ruijter E, Orru RVA (2014) Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem 16:2958–2975. doi:10.1039/c4gc00013g

    Article  CAS  Google Scholar 

  4. Toure BB, Hall DG (2009) Natural product synthesis using multicomponent reaction strategies. Chem Rev 109:4439–4486. doi:10.1021/cr800296p

    Article  CAS  PubMed  Google Scholar 

  5. Gu Y, Jerome F (2010) Glycerol as a sustainable solvent for green chemistry. Green Chem 12:1127–1138. doi:10.1039/c001628d

    Article  CAS  Google Scholar 

  6. Maddila SN, Maddila S, Van Zyl WE, Jonnalagadda SB (2015) Mn doped \({\rm ZrO}_{2}\) as a green, efficient and reusable heterogeneous catalyst for the multicomponent synthesis of pyrano[2,3-d]-pyrimidine derivatives. RSC Adv 5:37360–37366. doi:10.1039/c5ra06373f

    Article  CAS  Google Scholar 

  7. Corma A, Garcia H, Llabres FX, Xamena I (2010) Engineering metal organic frameworks for heterogeneous catalysis. Chem Rev 110:4606–4655. doi:10.1021/cr9003924

    Article  CAS  PubMed  Google Scholar 

  8. Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278. doi:10.1039/b418069k

    Article  CAS  Google Scholar 

  9. Sheldon RA (2014) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41:1437–1451. doi:10.1039/c1cs15219j

    Article  Google Scholar 

  10. Shuhei O, Ayumu O, Kazumichi Y (2008) Hydrothermal synthesis of vanadate- substituted hydroxyapatites, and catalytic properties for conversion of 2-propanol. Appl Catal A Gen 348:129–134. doi:10.1016/j.apcata.2008.06.035

    Article  Google Scholar 

  11. Maddila SN, Maddila S, van Zyl WE, Jonnalagadda SB (2016) Ru-hydroxyapatite: an efficient and reusable catalyst for the multicomponent synthesis of pyranopyrazoles under facile green conditions. Curr Org Synth 13:2125–2133. doi:10.2174/1385272820666160530104140

    Article  Google Scholar 

  12. Sugiyama S, Miyamoto T, Hayashi H, Moffat JB (1998) Effects of non-stoichiometry of calcium and strontium hydroxyapatites on the oxidation of ethane in the presence of tetrachloromethane. J Mol Catal A Chem 135:199–208. doi:10.1016/S1381-1169(97)00305-1

    Article  CAS  Google Scholar 

  13. Gruselle M (2015) Apatites: a new family of catalysts in organic synthesis. J Organomet Chem 793:93–101. doi:10.1016/j.jorganchem.2015.01.018

    Article  CAS  Google Scholar 

  14. Pillai MK, Singh S, Jonnalagadda SB (2010) Solvent-free Knoevenagel condensation over cobalt hydroxyapatite. Syn Commun 41:3710–3715. doi:10.1080/00397910903531714

    Article  Google Scholar 

  15. Singh S, Jonnalagadda SB (2008) Selective oxidation of n-pentane over V\(_{2}\)O\(_{5}\) supported on hydroxyapatite. Catal Lett 126:200–206. doi:10.1007/s10562-008-9607-1

    Article  CAS  Google Scholar 

  16. Mondelli C, Ferri D, Baiker A (2008) Ruthenium at work in Ru-hydroxyapatite during the aerobic oxidation of benzyl alcohol: an in situ ATR-IR spectroscopy study. J Catal 258:170–176. doi:10.1016/j.jcat.2008.06.011

    Article  CAS  Google Scholar 

  17. Zeng M, Yuan X, Yang Z, Qi C (2014) Novel macroporous palladium cation crosslinked chitosan membranes for heterogeneous catalysis application. Inter J Biolog Macromol 68:189–197. doi:10.1016/j.ijbiomac.2014.04.035

    Article  CAS  Google Scholar 

  18. Pinho MT, Silva AMT, Fathy NA, Attia AA, Gomes HT, Faria JL (2015) Activated carbon xerogel-chitosan composite materials for catalytic wet peroxide oxidation under intensified process conditions. J Environ Chem Eng 3:1243–1251. doi:10.1016/j.jece.2014.10.020

    Article  CAS  Google Scholar 

  19. Leonhardt SES, Stolle A, Ondruschka B, Cravotto G, Leo CD, Jandt KD, Keller TF (2010) Chitosan as a support for heterogeneous Pd catalysts in liquid phase catalysis. Appl Catal A Gen 379:30–37. doi:10.1016/j.apcata.2010.02.029

    Article  CAS  Google Scholar 

  20. Guibal E (2005) Heterogeneous catalysis on chitosan-based materials. Prog Polym Sci 30:71–109. doi:10.1016/j.progpolymsci.2004.12.001

    Article  CAS  Google Scholar 

  21. Crini G, Badot P (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399–447. doi:10.1016/j.progpolymsci.2007.11.001

    Article  CAS  Google Scholar 

  22. Kar S, Kaur T, Thirugnanam A (2016) Microwave-assisted synthesis of porous chitosan-modified montmorillonite-hydroxyapatite composite scaffolds. Int J Biol Macromol 82:628–636. doi:10.1016/j.ijbiomac.2015.10.060

    Article  CAS  PubMed  Google Scholar 

  23. Kithva P, Grondahl L, Martina D, Trau M (2010) Biomimetic synthesis and tensile properties of nanostructured high volume fraction hydroxyapatite and chitosan biocomposite films. J Mate Chem 20:381–389. doi:10.1039/b914798e

    Article  CAS  Google Scholar 

  24. Suresh L, Poornachandra Y, Kanakaraju S, Ganesh Kumar C, Chandramouli GV (2015) One-pot three-component domino protocol for the synthesis of novel pyrano[2,3-d]pyrimidines as antimicrobial and anti-biofilm agents. Org Biomol Chem 13:7294–306. doi:10.1039/c5ob00693g

    Article  CAS  PubMed  Google Scholar 

  25. Bedair AH, El-Hady NA, El-Latif MSA, Fakery AH, El-Agrody AM (2000) 4-Hydroxycoumarin in heterocyclic synthesis: part III. Synthesis of some new pyrano[2,3- d]pyrimidine, 2-substituted[1,2,4]triazolo[1,5-c]pyrimidine and pyrimido[1,6-b][1,2,4]-triazine derivatives. Farmaco 55:708–714. doi:10.1016/S0014-827X(00)00097-5

    Article  CAS  PubMed  Google Scholar 

  26. Mohareb RM, Zaki MY, Abbas NS (2015) Synthesis, anti-inflammatory and anti-ulcer evaluations of thiazole, thiophene, pyridine and pyran derivatives derived from androstenedione. Steroids 98:80–91. doi:10.1016/j.steroids.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  27. Queiroz RP, Calhelha RC, Vale-Silva LA, Pinto E, Nascimento SJ (2009) Synthesis of novel 3-(aryl) benzothieno [2,3-c]-pyran-1-ones from Sonogashira products and intramolecular cyclization: antitumoral activity evaluation. Euro J Med Chem 44:1893–1899. doi:10.1016/j.ejmech.2008.11.002

    Article  CAS  Google Scholar 

  28. Aytemir MD, Qzçelik BA (2010) Study of cytotoxicity of novel chlorokojic acid derivatives with their antimicrobial and antiviral activities. Eur J Med Chem 45:4089–4095. doi:10.1016/j.ejmech.2010.05.069

    Article  CAS  PubMed  Google Scholar 

  29. Kuo SC, Huang LJ, Nakamura H (1984) Studies on heterocyclic compounds. Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano-[2,3-c]-pyrazol-6-one derivatives. J Med Chem 27:539–544. doi:10.1021/jm00370a020

    Article  CAS  PubMed  Google Scholar 

  30. Saundane AR, Vijaykumar K, Vaijinath AV (2013) Synthesis of novel 2-amino-4-(5’-substituted 2’-phenyl-1H-indol-3’-yl)-6-aryl-4H-pyran-3-carbonitrile derivatives as antimicrobial and antioxidant agents. Bioorg Med Chem Lett 23:1978–1984. doi:10.1021/jm00370a020

    Article  CAS  PubMed  Google Scholar 

  31. Leon LG, Miranda PO, Martin VS, Padron JI, Padron JM (2007) Antiproliferative activity of 4-chloro-5,6-dihydro-2 H-pyrans. Part 2: enhancement of drug cytotoxicity. Bioorg Med Chem Lett 17:3087–3090. doi:10.1016/j.bmcl.2007.03.045

    Article  CAS  PubMed  Google Scholar 

  32. Kakimoto T, Koizumi F, Hirase K, Banba S, Tanaka E, Arai K (2004) Novel 3,\(3\alpha \),5, \(9{\upbeta }\)-tetrahydro-2H-furo[3,2-c][2]-benzopyran derivatives: synthesis of chiral glycol benzyl ether herbicides. Pest Manag Sci 60:493–500. doi:10.1002/ps.838

    Article  CAS  PubMed  Google Scholar 

  33. Xie L, Takeuchi Y, Cosentino LM, Mc Phail AT, Lee KHJ (2001) Anti-AIDS agents. Synthesis and anti-HIV activity of disubstituted (3’R,4’R)-3’,4’-di-O-(S)-camphanoyl-(+)-cis-khellactone analogues. J Med Chem 44:664–671. doi:10.1021/jm000070g

    Article  CAS  PubMed  Google Scholar 

  34. Devi I, Bhuyan PJ (2004) Sodium bromide catalysed one-pot synthesis of tetrahydrobenzo[b]pyrans via a three-component cyclocondensation under microwave irradiation and solvent free conditions. Tetrahedron Lett 45:8625–8627. doi:10.1016/j.tetlet.2004.09.158

    Article  CAS  Google Scholar 

  35. Ming H, Sai-Sai X, Neng J, Jin-Shuai L, Ling-Yi K, Xiao-Bing W (2015) Multifunctional coumarin derivatives: monoamine oxidase B (MAO-B) inhibition, anti-\({\upbeta }\)-amyloid (A\(\upbeta )\) aggregation and metal chelation properties against Alzheimer’s disease. Bioorg Med Chem Lett 25:508–513. doi:10.1016/j.bmcl.2014.12.034

    Article  Google Scholar 

  36. Heravi MM, Jani BA, Derikvand F, Bamoharram FF, Oskooie HA (2008) Three component, one-pot synthesis of dihydropyrano-[3,2-c]-chromene derivatives in the presence of H\(_{6}\)P\(_{2}\)W\(_{18}\)O\(_{62}\cdot \)18H\(_{2}\)O as a green and recyclable catalyst. Cat Commun 10:272–275. doi:10.1016/j.catcom.2008.08.023

    Article  CAS  Google Scholar 

  37. Elnagdi NMH, Al-Hokbany NS (2012) Organocatalysis in synthesis: \({{l}}\)-proline as an enantioselective catalyst in the synthesis of pyrans and thiopyrans. Molecules 17:4300–4312. doi:10.3390/molecules17044300

    Article  CAS  PubMed  Google Scholar 

  38. Peng Y, Song G, Huang F (2005) Tetramethylguanidine-[bmim][BF\(_{4}\)]. An efficient and recyclable catalytic system for one-pot synthesis of 4H-pyrans. Monatsh Chem 136:727–731. doi:10.1080/17518253.2012.691183

    Article  CAS  Google Scholar 

  39. Davoodnia A, Allameh S, Fazil S, Tavakoli-Hoseini N (2011) One-pot synthesis of 2-amino- 3-cyano-4-arylsubstituted tetrahydrobenzo[\({\upbeta }\)]pyrans catalysed by silica gel-supported polyphosphoric acid (PPA-SiO\(_{2}\)) as an efficient and reusable catalyst. Chem Pap 65:714–720. doi:10.2478/s11696-011-0064-8

    Article  CAS  Google Scholar 

  40. Jin TS, Wang AQ, Wang X, Zhang JS, Li TS (2004) A clean one-pot synthesis of tetrahydrobenzo-[\(\upbeta \)]pyran derivatives catalyzed by hexadecyltrimethyl ammonium bromide in aqueous media. Synlett 871–873. Doi:10.1055/s-2004-820025

  41. Gao S, Tsai CH, Tseng C, Yao C-F (2008) Fluoride ion catalyzed multicomponent reactions for efficient synthesis of 4H-chromene and N-arylquinoline derivatives in aqueous media. Tetrahedron 64:9143–9149. doi:10.1016/j.tet.2008.06.061

    Article  CAS  Google Scholar 

  42. Maddila S, Rana S, Pagadala R, Kankala S, Maddila SN, Jonnalagadda SB (2015) Synthesis of pyrazole-4-carbonitrile derivatives in aqueous media with CuO/ZrO\(_{2}\) as recyclable catalyst. Catal Commun 61:26–30. doi:10.1016/j.catcom.2014.12.005

    Article  CAS  Google Scholar 

  43. Shabalala S, Maddila S, Van Zyl WE, Jonnalagadda SB (2016) A facile, efficacious and reusable Sm\(_{2}\)O\(_{3}\)/ZrO\(_{2}\) catalyst for the novel synthesis of functionalized 1,4-dihydropyridine derivatives. Catal Commun 79:21–25. doi:10.1016/j.catcom.2016.02.017

    Article  CAS  Google Scholar 

  44. Maddila SN, Maddila S, Van Zyl WE, Jonnalagadda SB (2016) Ceria-vanadia/silica-catalyzed cascade for C-C and C-O bond activation: green one-pot synthesis of 2-amino-3-cyano-4H-pyrans. Chem Open 5:38–42. doi:10.1002/open.201500159

    CAS  Google Scholar 

  45. Maddila S, Rana S, Pagadala R, Jonnalagadda SB (2015) Mg-V/CO\(_{3}\) Hydrotalcite: an efficient and reusable catalyst for one-pot synthesis of multisubstituted pyridines. Res Chem Intermed 41:8269–8278. doi:10.1007/s11164-014-1890-4

    Article  CAS  Google Scholar 

  46. Maddila S, Naicker K, Gorle S, Rana S, Kotaiah Y, Maddila SN, Singh M, Singh P, Jonnalagadda SB (2016) New pyrano[2,3-d:6,5-d’]dipyrimidine derivatives—synthesis, in vitro cytotoxicity activity and computational studies. Anti-Cancer Agents in Med Chem 16:1031–1037. doi:10.2174/1871520616666151123095932

    Article  CAS  Google Scholar 

  47. Maddila S, Naicker K, Momin M, Rana S, Gorle S, Maddila SN, Kotaiah Y, Singh M, Jonnalagadda SB (2016) Novel 2-(1-(substitutedbenzyl)-1H-tetrazol-5-yl)-3-phenylacrylonitrile derivatives: synthesis, in vitro antitumor activity and computational studies. Med Chem Res 25:283–291. doi:10.1007/s00044-015-1482-x

    Article  CAS  Google Scholar 

  48. Maddila S, Pagadala R, Jonnalagadda SB (2015) Synthesis and insecticidal activity of tetrazole linked triazole derivatives. J Heterocyc Chem 52:487–499. doi:10.1002/jhet.2078

    Article  CAS  Google Scholar 

  49. Maddila S, Gorle S, Singh M, Lavanya P, Jonnalagadda SB (2013) Synthesis and anti-inflammatory activity of fused 1,2,4-triazolo-[3,4-b][1,3,4] thiadiazole derivatives of phenothiazine. Lett Drug Des Discov 10:977–983. doi:10.2174/15701808113109990034

    Article  CAS  Google Scholar 

  50. Maddila S, Jonnagadda SB (2013) Synthesis and antimicrobial activity of new 1,3,4-thiadiazoles containing oxadiazole, thiadiazole and triazole nuclei. Pharmaceu Chem J 46: 661. Doi:10.1007/s11094-013-0865-x

  51. Maddila S, Lavanya P, Rao CV (2016) Synthesis and pharmacological evaluation of novel 2H/6H-thiazolo-[3’,2’:2,3][1,2,4]triazolo[1,5-a]pyridine-9-carbonitrile derivatives. Arab J Chem 9:136–142. doi:10.1016/j.arabjc.2011.02.004

    Article  Google Scholar 

  52. Maddila S, Jonnalagadda SB (2013) New class of pyrimidinesulfamoyl containing pyrazole and pyrrole derivatives and their antioxidant activity. Lett Org Chem 10:374–379. doi:10.2174/1570178611310050013

    Article  CAS  Google Scholar 

  53. Anjaneyulu U, Swaroop VK, Vijayalakshmi U (2016) Preparation and characterization of novel Ag doped hydroxyapatite-Fe\(_{3}\)O\(_{4}\)-chitosan hybrid composites and in vitro biological evaluations for orthopaedic applications. RSC Adv 6:10997–11007. doi:10.1039/c5ra21479c

    Article  CAS  Google Scholar 

  54. Cai TX, Chen L, Jiang T, Shen X, Hu J, Tong H (2011) Facile synthesis of anisotropic porous chitosan/hydroxyapatite scaffolds for bone tissue engineering. J Mater Chem 21:12015–12025. doi:10.1039/c1jm11503k

    Article  CAS  Google Scholar 

  55. Wang UH, Sun K, Li A, Wang W, Chui P (2011) Size-controlled synthesis and characterization of fluorapatite nanocrystals in the presence of gelatin. Powder Technol 209:9–14. doi:10.1016/j.powtec.2011.01.020

    Article  CAS  Google Scholar 

  56. Wu VYS, Lee YH, Chang HC (2009) Preparation and characteristics of nanosized carbonated apatite by urea addition with coprecipitation method. Mater Sci Eng C 29:237–241. doi:10.1016/j.msec.2008.06.018

    Article  CAS  Google Scholar 

  57. Shavandi A, Bekhit AA, Ali MA, Sun Z, Gould M (2015) Development and characterization of hydroxyapatite/\({\upbeta }\)-TCP/chitosan composites for tissue engineering applications. Mater Sci Eng C 56:481–493. doi:10.1016/j.msec.2015.07.004

  58. Paulino XAT, Simionato JI, Garcia JC, Nozaki J (2006) Characterization of chitosan and chitin produced from silkworm chrysalides. Carbohydr Polym 64:98–103. doi:10.1016/j.carbpol.2005.10.032

    Article  CAS  Google Scholar 

  59. Katti YKS, Katti DR, Dash R (2008) Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed Mater 3:1–12. doi:10.1088/1748-6041/3/3/034122

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the National Research Foundation (NRF) of South Africa and University of KwaZulu-Natal, Durban, for financial support and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreekantha B. Jonnalagadda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 2667 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddila, S., Gangu, K.K., Maddila, S.N. et al. A facile, efficient, and sustainable chitosan/CaHAp catalyst and one-pot synthesis of novel 2,6-diamino-pyran-3,5-dicarbonitriles. Mol Divers 21, 247–255 (2017). https://doi.org/10.1007/s11030-016-9708-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-016-9708-5

Keywords

Navigation