Skip to main content
Log in

Functionalization of protected tyrosine via Sonogashira reaction: synthesis of 3-(1,2,3-triazolyl)-tyrosine

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

1,2,3-Triazol tyrosines were synthesized from tyrosine alkynes that were in turn prepared via Sonogashira cross-coupling reaction. The tyrosine alkynes were subjected to click-chemistry reaction conditions leading to the corresponding 3-(1,2,3-triazolyl)-tyrosines in yields ranging from moderate to good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Hermans J, Leach SJ, Scheraga HA (1963) Thermodynamic data from difference spectra II. Hydrogen bonding in salicylic acid and its implications for proteins. J Am Chem Soc 85:1390–1395. doi:10.1021/ja00893a007

    Article  CAS  Google Scholar 

  2. Minamihata K, Goto M, Kamiya N (2011) Site-specific protein cross-linking by peroxidase-catalyzed activation of a tyrosine-containing peptide tag. Bioconjugate Chem 22:74–81. doi:10.1021/bc1003982

    Article  CAS  Google Scholar 

  3. Minamihata K, Goto M, Kamiya N (2011) Protein heteroconjugation by the peroxidase-catalyzed tyrosine coupling reaction. Bioconjugate Chem 22:2332–2338. doi:10.1021/bc200420v

    Article  CAS  Google Scholar 

  4. Minamihata K, Goto M, Kamiya N (2012) Control of a tyrosyl radical mediated protein cross-linking reaction by electrostatic interaction. Bioconjugate Chem 23:1600–1609. doi:10.1021/bc300137s

    Article  CAS  Google Scholar 

  5. Joshi NS, Whitaker LR, Francis MB (2004) A three-component Mannich-type reaction for selective tyrosine bioconjugation. J Am Chem Soc 126:15942–15943. doi:10.1021/ja0439017

    Article  CAS  PubMed  Google Scholar 

  6. McFarland JM, Joshi NS, Francis MB (2008) Characterization of a three-component coupling reaction on proteins by isotopic labeling and nuclear magnetic resonance spectroscopy. J Am Chem Soc 130:7639–7644. doi:10.1021/ja710927q

    Article  CAS  PubMed  Google Scholar 

  7. Romanini DW, Francis MB (2008) Attachment of peptide building blocks to proteins through tyrosine bioconjugation. Bioconjugate Chem 19:153–157. doi:10.1021/bc700231v

    Article  CAS  Google Scholar 

  8. Hooker JM, Kovacs EW, Francis MB (2004) Interior surface modification of bacteriophage MS2. J Am Chem Soc 126:3718–3719. doi:10.1021/ja031790q

    Article  CAS  PubMed  Google Scholar 

  9. Schlick TL, Ding Z, Kovacs EW, Francis MB (2005) Dual-surface modification of the tobacco mosaic virus. J Am Chem Soc 127:3718–3723. doi:10.1021/ja046239n

    Article  CAS  PubMed  Google Scholar 

  10. Li K, Chen Y, Li SQ, Huong GN, Niu ZW, You SJ, Mello CM, Lu XB, Wang QA (2010) Chemical modification of M13 bacteriophage and its application in cancer cell imaging. Bioconjugate Chem 21:1369–1377. doi:10.1021/bc900405q

    Article  CAS  Google Scholar 

  11. Jones MW, Mantovani G, Blindauer CA, Ryan SM, Wang XX, Brayden DJ, Haddleton DM (2012) Direct peptide bioconjugation/PEGylation at tyrosine with linear and branched polymeric diazonium salts. J Am Chem Soc 134:7406–7413. doi:10.1021/ja211855q

  12. Ban H, Gavrilyuk J, Barbas CF (2010) Tyrosine bioconjugation through aqueous ene-type reactions: a click-like reaction for tyrosine. J Am Chem Soc 132:1523–1525. doi:10.1021/ja909062q

  13. Ban H, Nagano M, Gavrilyuk J, Hakamata W, Inokuma T, Barbas CF (2013) Facile and stabile linkages through tyrosine: bioconjugation strategies with the tyrosine-click reaction. Bioconjugate Chem 24:520–532. doi:10.1021/bc300665t

    Article  CAS  Google Scholar 

  14. Bauer DM, Ahmed I, Vigovskaya A, Fruk L (2013) Clickable tyrosine binding bifunctional linkers for preparation of DNA-protein conjugates. Bioconjugate Chem 24:1094–1101. doi:10.1021/bc4001799

    Article  CAS  Google Scholar 

  15. Lian W, Upadhyaya P, Rhodes CA, Liu Y, Pei D (2013) Screening bicyclic peptide libraries for protein–protein interaction inhibitors: discovery of a tumor necrosis factor-\(\alpha \) antagonist. J Am Chem Soc 135:11990–11995. doi:10.1021/ja405106u

    Article  CAS  PubMed  Google Scholar 

  16. Haslinger K, Peschke M, Brieke C, Maximowitsch E, Cryle MJ (2015) X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis. Nature 521:105–109. doi:10.1038/nature14141

    Article  CAS  PubMed  Google Scholar 

  17. Skaff O, Jolliffe KA, Hutton CA (2005) Synthesis of the side chain cross-linked tyrosine oligomers dityrosine, trityrosine, and pulcherosine. J Org Chem 70:7353–7363. doi:10.1021/jo051076m

    Article  CAS  PubMed  Google Scholar 

  18. Guppi SR, O’Doherty GA (2007) Synthesis of aza-analogues of the glycosylated tyrosine portion of mannopeptimycin-E. J Org Chem 72:4966–4969. doi:10.1021/jo070326r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Popov V, Panda SS, Katritzky AR (2013) Ligations from tyrosine isopeptides via 12- to 19-membered cyclic transition states. J Org Chem 78:7455–7461. doi:10.1021/jo4009468

    Article  CAS  PubMed  Google Scholar 

  20. Ghosh S, Kumar AS, Mehta GN, Soundararajan R (2010) Improved synthesis of L, L-cycloisodityrosine subunit of antitumor agents deoxybouvardin and RA-VII. Synth Commun 40:2389–2396. doi:10.1080/00397910903245166

    Article  CAS  Google Scholar 

  21. Zhang M-T, Irebo T, Johansson O, Hammarström L (2011) Proton-coupled electron transfer from tyrosine: a strong rate dependence on intramolecular proton transfer distance. J Am Chem Soc 133:13224–13227. doi:10.1021/ja203483j

    Article  CAS  PubMed  Google Scholar 

  22. Stefani HA, Leal DM, Manarin F (2012) 4-Organochalcogenoyl-1\(H\)-1,2,3-triazoles: synthesis and functionalization by a nickel-catalyzed Negishi cross-coupling reaction. Tetrahedron Lett 53:6495–6499. doi:10.1016/j.tetlet.2012.09.062

    Article  CAS  Google Scholar 

  23. Stefani HA, Vasconcelos SNS, Manarin F, Leal DM, Souza FB, Madureira LS, Schpector JZ, Eberlin MN, Godoi MN, Galaverna RS (2013) Synthesis of 5-organotellanyl-1\(H\)-1,2,3-triazoles: functionalization of the 5-position scaffold by the Sonogashira cross-coupling reaction. Eur J Org Chem 18:3780–3785. doi:10.1002/ejoc.201300009

    Article  Google Scholar 

  24. Vasconcelos SNS, Barbeiro CS, Khan AN, Stefani HA (2015) Synthesis of biphenyl tyrosine via cross-coupling Suzuk–Miyaura reaction using aryltrifluoroborate salts. J Braz Chem Soc 26:765–774. doi:10.5935/0103-5053.20150038

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the São Paulo Research Foundation (FAPESP—Grant 2012/00424-2 and fellowship 2013/17960-7 to S.N.S.V.) and the National Council for Scientific and Technological Development (CNPq) for a fellowship (308.320/2010–7 to HAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélio A. Stefani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 12647 KB)

Supplementary material 2 (docx 7260 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasconcelos, S.N.S., Shamim, A., Ali, B. et al. Functionalization of protected tyrosine via Sonogashira reaction: synthesis of 3-(1,2,3-triazolyl)-tyrosine. Mol Divers 20, 469–481 (2016). https://doi.org/10.1007/s11030-015-9642-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9642-y

Keywords

Navigation