Skip to main content

Advertisement

Log in

Discovery and identification of PIM-1 kinase inhibitors through a hybrid screening approach

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

PIM-1 kinase is an important therapeutic target in the treatment of cancer. Discovery and identification of PIM-1 Inhibitors with novel scaffolds are an effective way for developing potent therapeutic agents for the treatment of cancers. Here we proposed a hybrid screening approach which combines an optimal structure-based drug design strategy and a simple pharmacophore model to discover PIM-1 kinase inhibitors. With the proposed hybrid screening approach, the SPECS database containing 204,580 molecules was screened. In total, 89 hits were obtained. Forty three of them were purchased and tested in bioassays. Finally, 5 lead compounds with novel scaffolds were identified to exhibit promising antitumor activities against human leukemia cell line MV4-11, K-562 and human prostate cancer cell line PC-3 and DU145. Their \(\hbox {IC}_{50}\) values range from 4.40 to \(37.96 \,\upmu \hbox {M}\). Three hits with 3 different scaffolds were selected from these five hits for binding mode analysis. It was demonstrated that the subtle differences in the interactions of the representatives with PIM-1 kinase contribute to the different inhibitory activities. It was also demonstrated that the suggested hybrid screening approach is an effective method to discover PIM-1 inhibitors possessing different scaffolds. These leads have a strong likelihood to act as further starting points for us in the optimization and development of potent PIM-1 inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tahvanainen J, Kyläniemi MK, Kanduri K, Gupta B, Lähteenmäki H, Kallonen T, Rajavuori A, Rasool O, Koskinen PJ, Rao KV (2013) Proviral integration site for Moloney murine leukemia virus (PIM) kinases promote human T helper 1 cell differentiation. J Biol Chem 288:3048–3058. doi:10.1074/jbc.M112.361709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Saluste G, Albarran MI, Alvarez RM, Rabal O, Ortega MA, Blanco C, Kurz G, Salgado A, Pevarello P, Bischoff JR (2012) Fragment-hopping-based discovery of a novel chemical series of proto-oncogene PIM-1 kinase inhibitors. PloS One 7:e45964. doi:10.1371/journal.pone.0045964

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Nakano H, Saito N, Parker L, Tada Y, Abe M, Tsuganezawa K, Yokoyama S, Tanaka A, Kojima H, Okabe T (2012) Rational evolution of a novel type of potent and selective proviral integration site in Moloney murine leukemia virus kinase 1 (PIM1) inhibitor from a screening-hit compound. J Med Chem 55:5151–5164. doi:10.1021/jm3001289

    Article  CAS  PubMed  Google Scholar 

  4. Beharry Z, Mahajan S, Zemskova M, Lin Y-W, Tholanikunnel BG, Xia Z, Smith CD, Kraft AS (2011) The Pim protein kinases regulate energy metabolism and cell growth. Proc Natl Acad Sci 108:528–533. doi:10.1073/pnas.1013214108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Nihira K, Ando Y, Yamaguchi T, Kagami Y, Miki Y, Yoshida K (2010) Pim-1 controls NF-\(\kappa \)B signalling by stabilizing RelA/p65. Cell Death Differ 17:689–698. doi: 10.1038/cdd.2009.174

    Article  CAS  PubMed  Google Scholar 

  6. Magnuson NS, Wang Z, Ding G, Reeves R (2010) Why target PIM1 for cancer diagnosis and treatment? Future Oncol 6:1461–1478. doi:10.2217/fon.10.106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Pierce AC, Jacobs M, Stuver-Moody C (2008) Docking study yields four novel inhibitors of the protooncogene Pim-1 kinase. J Med Chem 51:1972–1975. doi:10.1021/jm701248t

    Article  CAS  PubMed  Google Scholar 

  8. Kumar A, Mandiyan V, Suzuki Y, Zhang C, Rice J, Tsai J, Artis DR, Ibrahim P, Bremer R (2005) Crystal structures of proto-oncogene kinase Pim1: a target of aberrant somatic hypermutations in diffuse large cell lymphoma. J Mol Biol 348:183–193. doi:10.1016/j.jmb.2005.02.039

    Article  CAS  PubMed  Google Scholar 

  9. Wang Z, Bhattacharya N, Weaver M, Petersen K, Meyer M, Gapter L, Magnuson NS (2001) Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J Vet Sci 2:167–179

    CAS  PubMed  Google Scholar 

  10. Pierre F, Stefan E, Nédellec A-S, Chevrel M-C, Regan CF, Siddiqui-Jain A, Macalino D, Streiner N, Drygin D, Haddach M (2011) 7-(4\(H\)-1,2,4-triazol-3-yl)benzo[\(c\)][2,6]naphthyridines: a novel class of Pim kinase inhibitors with potent cell antiproliferative activity. Bioorg Med Chem Lett 21:6687–6692. doi: 10.1016/j.bmcl.2011.09.059

    Article  CAS  PubMed  Google Scholar 

  11. Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C, Kronkaitis A, Li J, White A, Mische S (2005) Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. J Biol Chem 280:6130–6137. doi:10.1074/jbc.M409123200

    Google Scholar 

  12. Merkel AL, Meggers E, Ocker M (2012) PIM1 kinase as a target for cancer therapy. Expert Opin Investig Drug 21:425–436. doi:10.1517/13543784.2012.668527

    Article  CAS  Google Scholar 

  13. Theo Cuypers H, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W, van Wezenbeek P, Melief C, Berns A (1984) Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 37:141–150. doi:10.1016/0092-8674(84)90309-X

    Article  Google Scholar 

  14. Hoover D, Friedmann M, Reeves R, Magnuson N (1991) Recombinant human pim-1 protein exhibits serine/threonine kinase activity. J Biol Chem 266:14018–14023

    CAS  PubMed  Google Scholar 

  15. Shah N, Pang B, Yeoh K-G, Thorn S, Chen CS, Lilly MB, Salto-Tellez M (2008) Potential roles for the PIM1 kinase in human cancer: a molecular and therapeutic appraisal. Eur J Cancer 44:2144–2151. doi:10.1016/j.ejca.2008.06.044

    Article  CAS  PubMed  Google Scholar 

  16. Warnecke-Eberz U, Bollschweiler E, Drebber U, Metzger R, Baldus SE, Hölscher AH, Mönig S (2009) Prognostic impact of protein overexpression of the proto-oncogene PIM-1 in gastric cancer. Anticancer Res 29:4451–4455

    PubMed  Google Scholar 

  17. Good AC, Liu J, Hirth B, Asmussen G, Xiang Y, Biemann H-P, Bishop KA, Fremgen T, Fitzgerald M, Gladysheva T (2012) Implications of promiscuous Pim-1 kinase fragment inhibitor hydrophobic interactions for fragment-based drug design. J Med Chem 55:2641–2648. doi:10.1021/jm2014698

    Article  CAS  PubMed  Google Scholar 

  18. Wang Z, Bhattacharya N, Mixter P, Wei W, Sedivy J, Magnuson N (2002) Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta 1593:45–55. doi:10.1016/S0167-4889(02)00347-6

    Article  CAS  PubMed  Google Scholar 

  19. Qian K, Wang L, Cywin CL, Farmer BT, Hickey E, Homon C, Jakes S, Kashem MA, Lee G, Leonard S (2009) Hit to lead account of the discovery of a new class of inhibitors of Pim linases and crystallographic studies revealing an unusual kinase binding mode. J Med Chem 52:1814–1827. doi:10.1021/jm801242y

    Article  CAS  PubMed  Google Scholar 

  20. Bachmann M, Möröy T (2005) The serine/threonine kinase Pim-1. Int J Biochem Cell B 37:726–730. doi:10.1016/j.biocel.2004.11.005

    Article  CAS  Google Scholar 

  21. Kim KT, Baird K, Ahn JY, Meltzer P, Lilly M, Levis M, Small D (2005) Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival. Blood 105:1759–1767. doi:10.1182/blood-2004-05-2006

    Article  CAS  PubMed  Google Scholar 

  22. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J (2010) PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 95:1004–1015. doi:10.3324/haematol.2009.017079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Muraski JA, Rota M, Misao Y, Fransioli J, Cottage C, Gude N, Esposito G, Delucchi F, Arcarese M, Alvarez R (2007) Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med 13:1467–1475. doi:10.1038/nm1671

    Article  CAS  PubMed  Google Scholar 

  24. Xia Z, Knaak C, Ma J, Beharry ZM, McInnes C, Wang W, Kraft AS, Smith CD (2009) Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases. J Med Chem 52:74–86. doi:10.1021/jm800937p

    Article  CAS  PubMed  Google Scholar 

  25. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826. doi:10.1038/35090585

    Article  CAS  PubMed  Google Scholar 

  26. Valdman A, Fang X, Pang ST, Ekman P, Egevad L (2004) Pim-1 expression in prostatic intraepithelial neoplasia and human prostate cancer. Prostate 60:367–371. doi:10.1002/pros.20064

    Article  CAS  PubMed  Google Scholar 

  27. Xu Y, Zhang T, Tang H, Zhang S, Liu M, Ren D, Niu Y (2005) Overexpression of PIM-1 is a potential biomarker in prostate carcinoma. J Surg Oncol 92:326–330. doi:10.1002/jso.20325

    Google Scholar 

  28. Cibull T, Jones T, Li L, Eble J, Baldridge LA, Malott S, Luo Y, Cheng L (2006) Overexpression of Pim-1 during progression of prostatic adenocarcinoma. J Clin Pathol 59:285–288. doi:10.1136/jcp.2005.027672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Magistroni V, Mologni L, Sanselicio S, Reid JF, Redaelli S, Piazza R, Viltadi M, Bovo G, Strada G, Grasso M (2011) ERG deregulation induces PIM1 over-expression and aneuploidy in prostate epithelial cells. PloS One 6:e28162. doi:10.1371/journal.pone.0028162

  30. Yan B, Yau EX, Samanta S, Ong CW, Yong KJ, Ng LK, Bhattacharya B, Lim KH, Soong R, Yeoh KG (2012) Clinical and therapeutic relevance of PIM1 kinase in gastric cancer. Gastric Cancer 15:188–197. doi:10.1007/s10120-011-0097-2

    Article  CAS  PubMed  Google Scholar 

  31. Guo S, Mao X, Chen J, Huang B, Jin C, Xu Z, Qiu S (2010) Overexpression of Pim-1 in bladder cancer. J Exp Clin Cancer Res 29:161–167. doi:10.1186/1756-9966-29-161

    Article  PubMed Central  PubMed  Google Scholar 

  32. Chiang W-F, Yen C-Y, Lin C-N, Liaw G-A, Chiu C-T, Hsia Y-J, Liu S-Y (2006) Up-regulation of a serine–threonine kinase proto-oncogene Pim-1 in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 35:740–745. doi:10.1016/j.ijom.2006.01.027

    Article  PubMed  Google Scholar 

  33. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934. doi:10.1126/science.1075762

    Article  CAS  PubMed  Google Scholar 

  34. Jacobs MD, Black J, Futer O, Swenson L, Hare B, Fleming M, Saxena K (2005) Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002. J Biol Chem 280:13728–13734. doi:10.1074/jbc.M413155200

    Article  CAS  PubMed  Google Scholar 

  35. Ma J, Arnold H, Lilly M, Sears R, Kraft A (2007) Negative regulation of Pim-1 protein kinase levels by the B56\(\beta \) subunit of PP2A. Oncogene 26:5145–5153. doi: 10.1038/sj.onc.1210323

    Article  CAS  PubMed  Google Scholar 

  36. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  37. Stegmeier F, Warmuth M, Sellers W, Dorsch M (2010) Targeted cancer therapies in the twenty-first century: lessons from imatinib. Clin Pharmacol Ther 87:543–552. doi:10.1038/clpt.2009.297

    Article  CAS  PubMed  Google Scholar 

  38. Morwick T (2010) Pim kinase inhibitors: a survey of the patent literature. Expert Opin Ther Pat 20:193–212. doi:10.1517/13543770903496442

    Article  CAS  PubMed  Google Scholar 

  39. Grey R, Pierce AC, Bemis GW, Jacobs MD, Moody CS, Jajoo R, Mohal N, Green J (2009) Structure-based design of 3-aryl-6-amino-triazolo [4, 3-\(b\)] pyridazine inhibitors of Pim-1 kinase. Bioorg Med Chem Lett 19:3019–3022. doi: 10.1016/j.bmcl.2009.04.061

    Article  CAS  PubMed  Google Scholar 

  40. Dakin LA, Block MH, Chen H, Dowling JE, Feng X, Ferguson AD, Green I, Hird AW, Howard T, Keeton EK (2012) Discovery of novel benzylidene-1, 3-thiazolidine-2,4-diones as potent and selective inhibitors of the PIM-1, PIM-2, and PIM-3 protein kinases. Bioorg Med Chem Lett 22:4599–4604. doi:10.1016/j.bmcl.2012.05.098

    Article  CAS  PubMed  Google Scholar 

  41. Xiang Y, Hirth B, Asmussen G, Biemann H-P, Bishop KA, Good A, Fitzgerald M, Gladysheva T, Jain A, Jancsics K (2011) The discovery of novel benzofuran-2-carboxylic acids as potent Pim-1 inhibitors. Bioorg Med Chem Lett 21:3050–3056. doi:10.1016/j.bmcl.2011.03.030

    Article  CAS  PubMed  Google Scholar 

  42. Ren JX, Li LL, Zheng RL, Xie HZ, Cao ZX, Feng S, Pan YL, Chen X, Wei YQ, Yang SY (2011) Discovery of novel Pim-1 kinase inhibitors by a hierarchical multistage virtual screening approach based on SVM model, pharmacophore, and molecular docking. J Chem Inf Model 51:1364–1375. doi:10.1021/ci100464b

    Article  CAS  PubMed  Google Scholar 

  43. Sliman F, Blairvacq M, Durieu E, Meijer L, Rodrigo J, Desmaële D (2010) Identification and structure-activity relationship of 8-hydroxy-quinoline-7-carboxylic acid derivatives as inhibitors of Pim-1 kinase. Bioorg Med Chem Lett 20:2801–2805. doi:10.1016/j.bmcl.2010.03.061

    Article  CAS  PubMed  Google Scholar 

  44. Tao ZF, Hasvold LA, Leverson JD, Han EK, Guan R, Johnson EF, Stoll VS, Stewart KD, Stamper G, Soni N (2009) Discovery of 3\(H\)-benzo [4,5] thieno [3, 2-\(d\)] pyrimidin-4-ones as potent, highly selective, and orally bioavailable inhibitors of the human protooncogene proviral insertion site in Moloney murine leukemia virus (PIM) kinases. J Med Chem 52:6621–6636. doi: 10.1021/jm900943h

    Article  CAS  PubMed  Google Scholar 

  45. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303:1813–1818. doi:10.1126/science.1096361

    Article  CAS  PubMed  Google Scholar 

  46. Alonso H, Bliznyuk AA, Gready JE (2006) Combining docking and molecular dynamic simulations in drug design. Med Res Rev 26:531–568. doi:10.1002/med.20067

    Article  CAS  PubMed  Google Scholar 

  47. Shaikh SA, Jain T, Sandhu G, Latha N, Jayaram B (2007) From drug target to leads-sketching a physicochemical pathway for lead molecule design in silico. Curr Pharm Des 13:3454–3470. doi:10.2174/138161207782794220

    Article  CAS  PubMed  Google Scholar 

  48. Shekhar C (2008) In silico pharmacology: computer-aided methods could transform drug development. Chem Biol 15:413–414. doi:10.1016/j.chembiol.2008.05.001

    Article  CAS  PubMed  Google Scholar 

  49. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949. doi:10.1038/nrd1549

    Google Scholar 

  50. Leach AR, Gillet VJ, Lewis RA, Taylor R (2010) Three-dimensional pharmacophore methods in drug discovery. J Med Chem 53:539–558. doi:10.1021/jm900817u

    Article  CAS  PubMed  Google Scholar 

  51. Lengauer T, Lemmen C, Rarey M, Zimmermann M (2004) Novel technologies for virtual screening. Drug Discov Today 9:27–34. doi:10.1016/S1359-6446(04)02939-3

    Article  CAS  PubMed  Google Scholar 

  52. Schneider G, Böhm H-J (2002) Virtual screening and fast automated docking methods. Drug Discov Today 7:64–70. doi:10.1016/S1359-6446(01)02091-8

    Article  CAS  PubMed  Google Scholar 

  53. Gopalakrishnan B, Aparna V, Jeevan J, Ravi M, Desiraju G (2005) A virtual screening approach for thymidine monophosphate kinase inhibitors as antitubercular agents based on docking and pharmacophore models. J Chem Inf Model 45:1101–1108. doi:10.1021/ci050064z

    Article  CAS  PubMed  Google Scholar 

  54. OpenEye Scientific Software Inc. (2012) FRED program. Version 2.2.5 edn. OpenEye Scientific Software Inc., Santa Fe. http://www.eyesopen.com

  55. Khan KM, Saied S, Mughal UR, Munawar M, Perveen S (2009) Synthesis, leishmanicidal and enzyme inhibitory activities of quinoline-4-carboxylic acids. J Chem Soc Pak 31:809–818

    CAS  Google Scholar 

  56. Khan KM, Saify ZS, Khan ZA, Ahmed M, Saeed M, Schick M, Kohlbau H-J, Voelter W (2000) Syntheses and cytotoxic, antimicrobial, antifungal and cardiovascular activity of new quinoline derivatives. Arzneim Forsch Drug Res 50:915–924. doi:10.1055/s-0031-1300313

    CAS  Google Scholar 

  57. Dror O, Shulman-Peleg A, Nussinov R, Wolfson HJ (2004) Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design. Curr Med Chem 11:71–90. doi:10.2174/0929867043456287

    Article  CAS  PubMed  Google Scholar 

  58. Ganellin C, Lindberg P, Mitscher L (1998) Glossary of terms used in medicinal chemistry. Pure Appl Chem 70:1129–1143

    Google Scholar 

  59. Guner OF (2002) History and evolution of the pharmacophore concept in computer-aided drug design. Curr Top Med Chem 2:1321–1332. doi:10.2174/1568026023392940

    Article  CAS  PubMed  Google Scholar 

  60. Liao C, Sitzmann M, Pugliese A, Nicklaus MC (2011) Software and resources for computational medicinal chemistry. Future Med Chem 3:1057–1085. doi:10.4155/fmc.11.63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Accelrys Software Inc. (2012) Discovery studio modeling environment. Release 3.1 edn. Accelrys Software Inc., San Diego

  62. McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK (2003) Gaussian docking functions. Biopolymers 68:76–90

    Article  CAS  PubMed  Google Scholar 

  63. Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11:425–445. doi:10.1023/A:1007996124545

    Article  CAS  PubMed  Google Scholar 

  64. Verkhivker GM, Bouzida D, Gehlhaar DK, Rejto PA, Arthurs S, Colson AB, Freer ST, Larson V, Luty BA, Marrone T (2000) Deciphering common failures in molecular docking of ligand–protein complexes. J Comput Aided Mol Des 14:731–751. doi:10.1023/A:1008158231558

    Article  CAS  PubMed  Google Scholar 

  65. Stahl M, Rarey M (2001) Detailed analysis of scoring functions for virtual screening. J Med Chem 44:1035–1042. doi:10.1021/jm0003992

    Article  CAS  PubMed  Google Scholar 

  66. Grant JA, Pickup BT, Nicholls A (2001) A smooth permittivity function for Poisson–Boltzmann solvation methods. J Comput Chem 22:608–640. doi:10.1002/jcc.1032

    Article  CAS  Google Scholar 

  67. Cheney IW, Yan S, Appleby T, Walker H, Vo T, Yao N, Hamatake R, Hong Z, Wu JZ (2007) Identification and structure–activity relationships of substituted pyridones as inhibitors of Pim-1 kinase. Bioorg Med Chem Lett 17:1679–1683. doi:10.1016/j.bmcl.2006.12.086

    Google Scholar 

  68. Bostrom J (2001) Reproducing the conformations of protein-bound ligands: a critical evaluation of several popular conformational searching tools. J Comput Aided Mol Des 15:1137–1152. doi:10.1023/A:1015930826903

    Google Scholar 

  69. ChemAxon Ltd. (2011) MarvinSketch, 5.6.0.1 edn. ChemAxon Ltd., Budapest. http://www.chemaxon.com

  70. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519. doi:10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P

    Google Scholar 

  71. K-j Wu, Zeng J, Zhu G-d, Zhang L-l, Zhang D, Li L, Fan J-h, Wang X-y, He D-l (2009) Silibinin inhibits prostate cancer invasion, motility and migration by suppressing vimentin and MMP-2 expression. Acta Pharmacol Sin 30:1162–1168. doi:10.1038/aps.2009.94

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported byThe National Key Programs of China during the 12th Five-Year Plan Period (Grant 2012ZX09103-101-017). Authors would like to acknowledge the OpenEye Scientific Software and ChemAxon for their academic licenses. We are grateful to Dr. Chun Wang for her reviewing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijuan Chen or Mingli Xiang.

Additional information

Mingfeng Shao and Yiming Yuan contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, M., Yuan, Y., Yu, K. et al. Discovery and identification of PIM-1 kinase inhibitors through a hybrid screening approach. Mol Divers 18, 335–344 (2014). https://doi.org/10.1007/s11030-014-9504-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-014-9504-z

Keywords

Navigation