Skip to main content

Advertisement

Log in

Plate-based diversity subset screening: an efficient paradigm for high throughput screening of a large screening file

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The screening files of many large companies, including Pfizer, have grown considerably due to internal chemistry efforts, company mergers and acquisitions, external contracted synthesis, or compound purchase schemes. In order to screen the targets of interest in a cost-effective fashion, we devised an easy-to-assemble, plate-based diversity subset (PBDS) that represents almost the entire computed chemical space of the screening file whilst comprising only a fraction of the plates in the collection. In order to create this file, we developed new design principles for the quality assessment of screening plates: the Rule of 40 (Ro40) and a plate selection process that insured excellent coverage of both library chemistry and legacy chemistry space. This paper describes the rationale, design, construction, and performance of the PBDS, that has evolved into the standard paradigm for singleton (one compound per well) high-throughput screening in Pfizer since its introduction in 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ECFP4:

SciTegic/Accelrys’ level 4 extended connectivity fingerprints

FE:

File enrichment

GDRS:

Global diverse representative subset

HTS:

High throughput screening

Legacy compound:

A molecule synthesised as a singleton or in a small group of \(\le \) 10 compounds using methods such as stem reaction blocks [46]

Library compound:

A molecule synthesised by large scale (10–100s or even 1,000s of compounds) parallel chemistry methods

PBDS:

Plate-based diversity subset

PMC:

Parallel medicinal chemistry

SAR:

Structure–activity relationships

Screening file:

The entire set of compounds in an organisation’s high throughput screening collection

Screening subset:

A screening collection produced by selecting compounds or plates from the entire screening file using either targeted or diversity approaches

References

  1. Scannell JW, Blanckley A, Boldon H, Warrington B (2012) Diagnosing the decline in pharmaceutical R &D efficiency. Nat Rev Drug Discovery 11:191–200. doi:10.1038/nrd3681

    Article  CAS  Google Scholar 

  2. Pammolli F, Magazzini L, Riccaboni M (2011) The productivity crisis in pharmaceutical R &D. Nat Rev Drug Discovery 10:428–438. doi:10.1038/nrd3405

    Article  CAS  Google Scholar 

  3. Mullard A (2012) 2011 FDA drug approvals. Nat Rev Drug Discovery 11:91–94. doi:10.1038/nrd3657

    Article  CAS  Google Scholar 

  4. Munos B (2009) Lessons from 60 years of pharmaceutical innovation. Nat Rev Drug Discovery 8:959–968. doi:10.1038/nrd2961

    Article  CAS  Google Scholar 

  5. Pereira DA, Williams JA (2007) Origin and evolution of high throughput screening. Br J Pharmacol 152:53–61. doi:10.1038/sj.bjp.0707373

    Article  PubMed  CAS  Google Scholar 

  6. Hüser J (2006) High-throughput screening in drug discovery. Wiley-VCH, Weinheim

    Book  Google Scholar 

  7. Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T, Green DV, Hertzberg RP, Janzen WP, Paslay JW, Schopfer U, Sittampalam GS (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discovery 10:188–195. doi:10.1038/nrd3368

    Google Scholar 

  8. Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening. Curr Opin Pharmacol 9:580–588. doi:10.1016/j.coph.2009.08.004

    Article  PubMed  CAS  Google Scholar 

  9. Bakken GA, Bell AS, Boehm M, Everett JR, Gonzales R, Hepworth D, Klug-McLeod JL, Lanfear J, Loesel J, Mathias J, Wood TP (2012) Shaping a screening file for maximal lead discovery efficiency and effectiveness: elimination of molecular redundancy. J Chem Inf Model 52:2937–2949. doi:10.1021/ci300372a

    Article  PubMed  CAS  Google Scholar 

  10. Xi H, Lunney EA (2011) The design, annotation, and application of a kinase-targeted library. Methods Mol Biol 685:279–291. doi:10.1007/978-1-60761-931-4_14

    Article  PubMed  CAS  Google Scholar 

  11. Yeap SK, Walley RJ, Snarey M, van Hoorn WP, Mason JS (2007) Designing compound subsets: comparison of random and rational approaches using statistical simulation. J Chem Inf Model 47:2149–2158. doi:10.1021/ci600382m

    Article  PubMed  CAS  Google Scholar 

  12. Congreve M, Carr R, Murray C, Jhoti H (2003) A ’rule of three’ for fragment-based lead discovery? Drug Discovery Today 8:876–877

    Article  PubMed  Google Scholar 

  13. Posner BA, Xi H, Mills JE (2009) Enhanced HTS hit selection via a local hit rate analysis. J Chem Inf Model 49:2202–2210. doi:10.1021/ci900113d

    Article  PubMed  CAS  Google Scholar 

  14. Soulard P, McLaughlin M, Stevens J, Connolly B, Coli R, Wang L, Moore J, Kuo MS, LaMarr WA, Ozbal CC, Bhat BG (2008) Development of a high-throughput screening assay for stearoyl-CoA desaturase using rat liver microsomes, deuterium labeled stearoyl-CoA and mass spectrometry. Anal Chim Acta 627:105–111. doi:10.1016/j.aca.2008.04.017

    Article  PubMed  CAS  Google Scholar 

  15. Everett J, Gardner M, Pullen F, Smith G, Snarey M, Terrett N (2001) The application of non-combinatorial chemistry to lead discovery. Drug Discovery Today 6:779–785. doi:10.1016/S1359-6446(01)01876-1

    Article  PubMed  CAS  Google Scholar 

  16. Feng BY, Shoichet BK (2006) Synergy and antagonism of promiscuous inhibition in multiple-compound mixtures. J Med Chem 49:2151–2154. doi:10.1021/jm060029z

    Article  PubMed  CAS  Google Scholar 

  17. Bender A, Bojanic D, Davies JW, Crisman TJ, Mikhailov D, Scheiber J, Jenkins JL, Deng Z, Hill WA, Popov M, Jacoby E, Glick M (2008) Which aspects of HTS are empirically correlated with downstream success? Curr Opin Drug Discovery Dev 11:327–337

    Google Scholar 

  18. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discovery 6:211–219. doi:10.1038/nrd2220

    Article  CAS  Google Scholar 

  19. Larsson A, Jansson A, Aberg A, Nordlund P (2011) Efficiency of hit generation and structural characterization in fragment-based ligand discovery. Curr Opin Chem Biol 15:482–488. doi:10.1016/j.cbpa.2011.06.008

    Article  PubMed  CAS  Google Scholar 

  20. Schneider G (2010) Virtual screening: an endless staircase? Nat Rev Drug Discovery 9:273–276. doi:10.1038/nrd3139

    Article  CAS  Google Scholar 

  21. Hopkins A, Lanfear J, Lipinski C, Beeley L (2005) Chemical tools for indications discovery. Annu Rep Med Chem 40:339–348. doi:10.1016/s0065-7743(05)40022-6

    Article  CAS  Google Scholar 

  22. Pearlman RS, Smith KM (1998) Novel software tools for chemical diversity. Perspect Drug Discovery Des 9–11:339–353. doi:10.1023/a:1027232610247

    Article  Google Scholar 

  23. Crisman TJ, Jenkins JL, Parker CN, Hill WAG, Bender A, Deng Z, Nettles JH, Davies JW, Glick M (2007) “Plate cherry picking”: a novel semi-sequential screening paradigm for cheaper, faster, information-rich compound selection. J Biomol Screen 12:320–327. doi:10.1177/1087057107299427

    Google Scholar 

  24. Sukuru SC, Jenkins JL, Beckwith RE, Scheiber J, Bender A, Mikhailov D, Davies JW, Glick M (2009) Plate-based diversity selection based on empirical HTS data to enhance the number of hits and their chemical diversity. J Biomol Screen 14:690–699. doi:10.1177/1087057109335678

    Article  PubMed  CAS  Google Scholar 

  25. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Delivery Rev 23:3–25. doi:10.1016/s0169-409x(96)00423-1

    Article  CAS  Google Scholar 

  26. Blagg J (2006) Structure–activity relationships for in vitro and in vivo toxicity. Annu Rep Med Chem 41:353–368. doi:10.1016/s0065-7743(06)41024-1

    Article  CAS  Google Scholar 

  27. Spencer RW (1998) High-throughput screening of historic collections: observations on file size, biological targets, and file diversity. Biotechnol Bioeng 61:61–67

    Article  PubMed  CAS  Google Scholar 

  28. Milne GM (2003) Pharmaceutical productivity—the imperative for new paradigms. Annu Rep Med Chem 38:383–396. doi:10.1016/s0065-7743(03)38036-4

    Article  Google Scholar 

  29. Leardi R (2001) Genetic algorithms in chemometrics and chemistry: a review. J Chemom 15:559–569. doi:10.1002/cem.651

    Article  CAS  Google Scholar 

  30. SciTegic/Accelrys (2006) Pipeline Pilot v5.1

  31. Leo AJ, Hoekman D (2000) Calculating log P(oct) with no missing fragments: the problem of estimating new interaction parameters. Perspect Drug Discovery Des 18:19–38. doi:10.1023/a:1008739110753

    Article  CAS  Google Scholar 

  32. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 43:3714–3717. doi:10.1021/jm000942e

    Article  PubMed  CAS  Google Scholar 

  33. Barnard JM, Downs GM (1997) Chemical fragment generation and clustering software. J Chem Inf Comput Sci 37:141–142. doi:10.1021/ci960090k

    Article  CAS  Google Scholar 

  34. Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39:2887–2893. doi:10.1021/jm9602928

    Article  PubMed  CAS  Google Scholar 

  35. Priest BT (2009) Future potential and status of selective sodium channel blockers for the treatment of pain. Curr Opin Drug Discovery Dev 12:682–692

    CAS  Google Scholar 

  36. Deacon M, Singleton D, Szalkai N, Pasieczny R, Peacock C, Price D, Boyd J, Boyd H, Steidl-Nichols JV, Williams C (2007) Early evaluation of compound QT prolongation effects: a predictive 384-well fluorescence polarization binding assay for measuring hERG blockade. J Pharmacol Toxicol Methods 55:238–247. doi:10.1016/j.vascn.2006.09.003

    Google Scholar 

  37. Kaczorowski GJ, Garcia ML, Bode J, Hess SD, Patel UA (2011) The importance of being profiled: improving drug candidate safety and efficacy using ion channel profiling. Front Pharmacol 2:78. doi:10.3389/fphar.2011.00078

    Article  PubMed  CAS  Google Scholar 

  38. Gribbon P, Sewing A (2003) Fluorescence readouts in HTS: no gain without pain? Drug Discovery Today 8:1035–1043. doi:10.1016/S1359-6446(03)02895-2

    Article  PubMed  CAS  Google Scholar 

  39. Parker LC, Prince LR, Sabroe I (2007) Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin Exp Immunol 147:199–207. doi:10.1111/j.1365-2249.2006.03203.x

    Article  PubMed  CAS  Google Scholar 

  40. Nathans R, Cao H, Sharova N, Ali A, Sharkey M, Stranska R, Stevenson M, Rana TM (2008) Small-molecule inhibition of HIV-1 Vif. Nat Biotechnol 26:1187–1192. doi:10.1038/nbt.1496

    Google Scholar 

  41. Clackson T (2000) Regulated gene expression systems. Gene Ther 7:120–125. doi:10.1038/sj.gt.3301120

    Article  PubMed  CAS  Google Scholar 

  42. Gribbon P, Schaertl S, Wickenden M, Williams G, Grimley R, Stuhmeier F, Preckel H, Eggeling C, Kraemer J, Everett J, Keighley WW, Sewing A (2004) Experiences in implementing uHTS-cutting edge technology meets the real world. Curr Drug Discovery Technol 1:27–35. doi:10.2174/1570163043484798

    Article  CAS  Google Scholar 

  43. Rogers D, Brown RD, Hahn M (2005) Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J Biomol Screen 10:682–686. doi:10.1177/1087057105281365

    Article  PubMed  CAS  Google Scholar 

  44. Daylight Chemical Information Systems Inc. (2005) Daylight Toolkit v4.91

  45. Tripos Inc. (2005) DiverseSolutions

  46. ThermoScientific. http://www.thermoscientific.com. Accessed 26 Feb 2013

Download references

Acknowledgments

We gratefully acknowledge contributions made to this work from the following Pfizer staff in Research and Research Informatics: Alexander Alex, Francois Bertelli, Mark Gardner, Katrina Gore, Marcel De Groot, Willem Van Hoorn, Travis Mathewson, Bruce Posner, Steve Street, Tony Wood and Siew Kuen Yeap.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeremy R. Everett or Jens Loesel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 430 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, A.S., Bradley, J., Everett, J.R. et al. Plate-based diversity subset screening: an efficient paradigm for high throughput screening of a large screening file. Mol Divers 17, 319–335 (2013). https://doi.org/10.1007/s11030-013-9438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-013-9438-x

Keywords

Navigation