Skip to main content
Log in

Discriminating of HMG-CoA reductase inhibitors and decoys using self-organizing maps

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Self-Organizing Map (SOM) models were built to distinguish inhibitors of HMG-CoA reductase from its non-binding decoys. The molecules were represented by five global molecular descriptors and seven 2D property autocorrelation descriptors. Based on these molecular descriptors, 35 HMG-CoA reductase ligands and 1480 decoys were projected into a self-organizing network. In the map, the ligands and the decoys were well separated, where no neuron was occupied by a ligand and a decoy at the same time. Afterward, the discriminating power of the selected molecular descriptors was further validated by extending the datasets to 135 inhibitors. Finally, the SOM approach was subsequently used to identify active compounds in a virtual screening experiment by an external test set which included 32 HMG-CoA reductase inhibitors and 1103 decoys. In this study, 84.4% of the inhibitors (true positives) are retrieved with 15% contamination by non-hits (false positives). The SOM models obtained in this article exhibited powerful ability in virtual screening to find novel inhibitors for HMG-CoA reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mukhtar RY, Reckless JP (2005) Statin-induced myositis: a commonly encountered or rare side effect? Curr Opin Lipidol 16: 640–647

    PubMed  CAS  Google Scholar 

  2. Bauknecht H, Zell A, Bayer H, Levi P, Wagener M, Sadowski J, Gasteiger J (1996) Locating biologically active compoundsin medium-sized heterogeneous datasets by topological autocorrelation vectors: dopamine and benzodiazepine agonists. J Chem Inf Comput Sci 36: 1205–1213. doi:10.1021/ci960346m

    PubMed  CAS  Google Scholar 

  3. Bleicher KH, Böhm H, Müller K, Alanine AI (2003) Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2: 369–378. doi:10.1038/nrd1086

    Article  PubMed  CAS  Google Scholar 

  4. Schneider G (2002) Trends in virtual combinatorial library design. Curr Med Chem 9: 2095–2101. doi:10.2174/0929867023368755

    PubMed  CAS  Google Scholar 

  5. Dessalew N, Bharatam PV (2007) Identification of potential glycogen kinase-3 inhibitors by structure based virtual screening. Biophys Chem 128: 165–175. doi:10.1016/j.bpc.2007.04.001

    Article  PubMed  CAS  Google Scholar 

  6. Gruneberg S, Stubbs MT, Klebe G (2002) Successful virtual screening for novel inhibitors of human carbonic anhydrase: Strategy and experimental confirmation. J Med Chem 45: 3588–3602. doi:10.1021/jm011112j

    Article  PubMed  Google Scholar 

  7. Powers RA, Morandi F, Shoichet BK (2002) Structure-based discovery of a novel, noncovalent inhibitor of AmpC beta-lactamase. Structure (Camb) 10: 1013–1023. doi:10.1016/S0969-2126(02)00799-2

    Article  CAS  Google Scholar 

  8. Zhao L, Brinton RD (2005) Structure-based virtual screening for plant-based ERbeta-selective ligands as potential preventative therapy against age-related neurodegenerative diseases. J Med Chem 48: 3463–3466. doi:10.1021/jm0490538

    Article  PubMed  CAS  Google Scholar 

  9. Zhou Y, Peng H, Ji Q, Qi J, Zhu Z, Yang C (2006) Discovery of small molecule inhibitors of integrin alphavbeta3 through structure-based virtual screening. Bioorg Med Chem Lett 16: 5878–5882. doi:10.1016/j.bmcl.2006.08.061

    Article  PubMed  CAS  Google Scholar 

  10. Villoutreix BO, Eudes R, Miteva MA (2009) Structure-based virtual ligand screening: recent success stories. Comb Chem High Throughput Screen 12: 1000–1016. doi:10.2174/138620709789824682

    Article  PubMed  CAS  Google Scholar 

  11. Park H, Lee J, Lee S (2006) Critical assessment of the automated AutoDock as a new docking tool for virtual screening. Proteins 65: 549–554. doi:10.1002/prot.21183

    Article  PubMed  CAS  Google Scholar 

  12. Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular docking. J Med Chem 46: 2287–2303. doi:10.1021/jm0203783

    Article  PubMed  CAS  Google Scholar 

  13. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43: 59–69. doi:10.1007/BF00337288

    Article  Google Scholar 

  14. Ivanenkov YA, Savchuk NP, Ekins S, Balakin KV (2009) Computational mapping tools for drug discovery. Drug Discov Today 14: 767–775. doi:10.1016/j.drudis.2009.05.016

    Article  PubMed  CAS  Google Scholar 

  15. Zupan J., Gasteiger J. (1999) Neural networks in chemistry and drug design, 2nd edn. Weinheim, Wiley-VCH

    Google Scholar 

  16. Schneider P, Tanrikulu Y, Schneider G (2009) Self-organizing maps in drug discovery: compound library design, scaffold-hopping, repurposing. Curr Med Chem 16: 258–266. doi:10.2174/092986709787002655

    Article  PubMed  CAS  Google Scholar 

  17. Yan AX (2006) Application of self-organizing maps in compounds pattern recognition and combinatorial library design. Comb Chem High throughput Screen 9: 473–480. doi:10.2174/138620706777698562

    Article  PubMed  CAS  Google Scholar 

  18. Wang Z, Yan AX, Yuan QP (2009) Classification of blood-brain barrier permeation by Kohonen’s Self-Organizing Neural Network (KohNN) and Support Vector Machine (SVM). QSAR Comb Sci 28: 989–994. doi:10.1002/qsar.200960008

    Article  CAS  Google Scholar 

  19. Wang Z, Yan AX, Yuan QP, Gasteiger J (2008) Explorations into modeling human oral bioavailability. Eur J Med Chem 43: 2442–2452. doi:10.1016/j.ejmech.2008.05.017

    Article  PubMed  CAS  Google Scholar 

  20. Yan AX, Wang Z, Cai ZY (2008) Prediction of human intestinal absorption by GA feature selection and support vector machine regression. Int J Mol Sci 9: 1961–1976. doi:10.3390/ijms9101961

    Article  PubMed  CAS  Google Scholar 

  21. Kaiser D, Terfloth L, Kopp S, Schulz J, de Laet R, Chiba P, Ecker GF, Gasteiger J (2007) Self-organizing maps for identification of new inhibitors of P-glycoprotein. J Med Chem 50: 1698–1702. doi:10.1021/jm060604z

    Article  PubMed  CAS  Google Scholar 

  22. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49: 6789–6801. doi:10.1021/jm0608356

    Article  PubMed  CAS  Google Scholar 

  23. Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a webaccessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35: D198–D201. doi:10.1093/nar/gkl999

    Article  PubMed  CAS  Google Scholar 

  24. Bush MR, Kaufman MD, Kennedy RM, Larsen SD, Trivedi BK, Song YT, Hutchings RH, Poel TJ (2005) Preparation of imidazole-based HMG-CoA reductase inhibitors. WO 2005079790

  25. Cheng XM, Hutchings RH (2007) Preparation of imidazoles as HMG-CoA reductase inhibitors. WO 2007042910

  26. Griffin J, Lanza G, Yu J (2007) Preparation of imidazoles as inhibitors of p38 MAP kinase and/or HMG - CoA reductase. WO 2007051065

  27. Kennedy RM, Park WKC, Roth BD, Song YT, Trivedi BK (2005) Preparation of 7-(1-pyrrolyl)-3,5-dihydroxyheptanoic acid derivatives as HMG-CoA reductase inhibitors. US Patent 2005043364

  28. Zhuge B, Fang HY, Yu H, Rao ZM, Shen W, Song J, Zhuge J (2008) Bioconversion of lovastatin to a novel statin by Amycolatopsis sp. Appl Microbiol Biotechnol 79: 209–216. doi:10.1007/s00253-008-1430-5

    Article  PubMed  CAS  Google Scholar 

  29. Scifinder, version 2007.1. Chemical Abstracts Service: Columbus, OH, 2007; RN 58-08-2. (Accessed 10 Oct 2010)

  30. PubChem Bioassay AID1066. http://pubchem.ncbi.nlm.nih.gov/assay/assay.cgi?aid=1066

  31. ADRIANA.Code, version 2.2, Molecular Networks GmbH, Erlangen, Germany. http://www.molecular-networks.com. (Accessed April 2010)

  32. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug tansport properties. J Med Chem 43: 3714–3717. doi:10.1021/jm000942e

    Article  PubMed  CAS  Google Scholar 

  33. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23: 3–25. doi:10.1016/S0169-409X(96)00423-1

    Article  CAS  Google Scholar 

  34. Miller KJ (1990) Additivity methods in molecular polarizability. J Am Chem Soc 112: 8533–8542. doi:10.1021/ja00179a044

    Article  CAS  Google Scholar 

  35. Petitjean M (1992) Applications of the radius-diameter diagram to the classification of topological and geometrical shapes of chemical compounds. J Chem Inf Comput Sci 32: 331–337. doi:10.1021/ci00008a012

    CAS  Google Scholar 

  36. Volkenstein MV (1963) Configurational statistics of polymeric chains. Wiley, New York

    Google Scholar 

  37. Tanford C (1961) Physical chemistry of macromolecules. Wiley, New York

    Google Scholar 

  38. Moreau G, Broto P (1980) The autocorrelation of a topological structure: a new molecular descriptor. Nouv J Chim 4: 359–360

    CAS  Google Scholar 

  39. Wagener M, Sadowski J, Gasteiger J (1995) Autocorrelation of molecular surface properties for modeling corticosteroid binding globulin and cytosolic ah receptor activity by neural networks. J Am Chem Soc 117: 7769–7775. doi:10.1021/ja00134a023

    Article  CAS  Google Scholar 

  40. Gasteiger J, Marsili M (1978) A new model for calculating atomic charges in molecules. Tetrahedron Lett 34: 3181–3184. doi:10.1016/S0040-4039(01)94977-9

    Article  Google Scholar 

  41. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36: 3219–3228. doi:10.1016/0040-4020(80)80168-2

    Article  CAS  Google Scholar 

  42. Gasteiger J, Hutchings MG (1984) Quantitative models of gas-phase proton transfer reaction involving alcohols, ethers and their thio analogs. correlation analyses based on residual electronegativity and effective polarizability. J Am Chem Soc 106: 6489–6495. doi:10.1021/ja00334a006

    Article  CAS  Google Scholar 

  43. Kohonen T. (1989) Self-organization and associative memory. Springer, Berlin

    Google Scholar 

  44. SONNIA can be obtained from Molecular Networks GmbH, Erlangen, Germany. http://www.molecular-networks.com. (Accessed April 2010)

  45. Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the correlation coefficient. Am Stat 42: 59–66. doi:10.2307/2685263

    Article  Google Scholar 

  46. Gasteiger J, Teckentrup A, Terfloth L, Spycher S (2003) Neural networks as data mining tools in drug design. J Phys Org Chem 16: 232–245. doi:10.1002/poc.597

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aixia Yan.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 284 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Yan, A. Discriminating of HMG-CoA reductase inhibitors and decoys using self-organizing maps. Mol Divers 15, 655–663 (2011). https://doi.org/10.1007/s11030-010-9288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-010-9288-8

Keywords

Navigation