Skip to main content
Log in

On the industrial applications of MCRs: molecular diversity in drug discovery and generic drug synthesis

  • SI - MCR2009
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

During the last decades, multicomponent chemistry has gained much attention in pharmaceutical research, especially in the context of lead finding and optimization. Here, in particular, the main advantages of multicomponent reactions (MCRs) like ease of automation and high diversity generation were utilized. In consequence of these beneficial properties, a plethora of new MCRs combined with appropriate classical reaction sequences have been published, the accessible chemical space was extended steadily. In the meantime, the desired high diversity became a challenge itself, because by now the systematic use of this huge and unmanageable space for drug discovery was limited by the lack of suitable computational tools. Therefore, this article provides an insight for the rational use of this enormous chemical space in drug discovery and generic drug synthesis. In this context, a short overview of the applied chemo informatics, necessary for the virtual screening of the biggest available chemical space, is given. Furthermore, some examples for recently developed multicomponent sequences are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MDM2:

Murine double minute 2

TOTO:

Topological torsion

SAR:

Structure–activity relationship

References

  1. Hermkens PHH, Ottenheijm HCJ, Rees DC (1997) Solid-phase organic reactions II: A review of the literature Nov 95–Nov 96. Tetrahedron 53: 5643–5678. doi:10.1016/S0040-4020(97)00279-2

    Article  CAS  Google Scholar 

  2. Gordon EM, Gallop MA, Patel DV (1996) Strategy and tactics in combinatorial organic synthesis. Applications to drug discovery. Acc Chem Res 29: 144–154. doi:10.1021/ar950170u

    Article  CAS  Google Scholar 

  3. Gallop MA, Barrett RW, Dower WJ, Fodor SPA, Gordon EM (1994) Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J Med Chem 37: 1233–1251. doi:10.1021/jm00035a001

    Article  CAS  PubMed  Google Scholar 

  4. Gordon EM, Barrett RW, Dower WJ, Fodor SPA, Gallop MA (1994) Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. J Med Chem 37: 1385–1401. doi:10.1021/jm00036a001

    Article  CAS  PubMed  Google Scholar 

  5. Dömling A (1998) Isocyanide based multicomponent reactions in combinatorial chemistry. Comb Chem High T Scr 1: 1–22

    Google Scholar 

  6. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106: 17–89. doi:10.1021/cr0505728

    Article  PubMed  Google Scholar 

  7. Zhu J, Bienaymé H (2005) Multicomponent reactions. Wiley, Weinheim

    Book  Google Scholar 

  8. Wright DL, Robotham CV, Aboud K (2002) Studies on the sequential multi-component coupling/Diels–Alder cycloaddition reaction. Tetrahedron Lett 43: 943–946. doi:10.1016/S0040-4039(01)02299-7

    Article  CAS  Google Scholar 

  9. Xiang Z, Luo T, Cui J, Shi X, Fathi R, Chen J, Yang Z (2004) Concise synthesis of isoquinoline via the Ugi and Heck reactions. Org Lett 6: 3155–3158. doi:10.1021/ol048791n

    Article  CAS  PubMed  Google Scholar 

  10. Pirrung MC, Das Sarma K (2004) Multi component reactions are accelerated in water. J Am Chem Soc 126: 444–445. doi:10.1021/ja038583a

    Article  CAS  PubMed  Google Scholar 

  11. Gedey S, Eycken J, Fulop F (2002) Liquid-phase combinatorial synthesis of alicyclic β-lactams via Ugi four-component reaction. Org Lett 4: 1967–1969. doi:10.1021/ol025986r

    Article  CAS  PubMed  Google Scholar 

  12. Banfi L, Basso A, Guanti G, Lecinska P, Riva R (2006) Multicomponent synthesis of dihydrobenzoxazepinones by coupling Ugi and Mitsunobu reactions. Org Biomol Chem 4: 4236–4240. doi:10.1039/b613056a

    Article  CAS  PubMed  Google Scholar 

  13. Fayol A, Zhu J (2005) Three-component synthesis of polysubstituted 6-azaindolines and its tricyclic derivatives. Org Lett 7: 239–242. doi:10.1021/ol0477881

    Article  CAS  PubMed  Google Scholar 

  14. Hulme C, Ma L, Romano JJ, Morrissette M (1999) Remarkable three-step-one-pot solution phase preparation of novel imidazolines utilizing a UDC (Ugi/de-Boc/cyclize) strategy. Tetrahedron Lett 40: 7925–7928. doi:10.1016/S0040-4039(99)01580-4

    Article  CAS  Google Scholar 

  15. Hulme C, Ma L, Cherrier MP, Romano JJ, Morton G, Duquenne C, Salvino J, Labaudiniere R (2000) Novel applications of convertible isonitriles for the synthesis of mono and bicyclic γ-lactams via a UDC strategy. Tetrahedron Lett 41: 1883–1887. doi:10.1016/S0040-4039(00)00052-6

    Article  CAS  Google Scholar 

  16. Tempest P, Ma V, Thomas S, Hua Z, Kelly MG, Hulme C (2001) Two-step solution-phase synthesis of novel benzimidazoles utilizing a UDC (Ugi/de-Boc/cyclize) strategy. Tetrahedron Lett 42: 4959–4962. doi:10.1016/S0040-4039(01)00919-4

    Article  CAS  Google Scholar 

  17. Nixey T, Kelly M, Semin D, Hulme C (2002) Short solution phase preparation of fused azepine-tetrazoles via a UDC (Ugi/de-Boc/cyclize) strategy. Tetrahedron Lett 43: 3681–3684. doi:10.1016/S0040-4039(02)00636-6

    Article  CAS  Google Scholar 

  18. Portlock DE, Naskar D, West L, Ostaszewski R, Chen JJ (2003) Solid-phase synthesis of five-dimensional libraries via a tandem Petasis—Ugi multi-component condensation reaction. Tetrahedron Lett 44: 5121–5124. doi:10.1016/S0040-4039(03)01119-5

    Article  CAS  Google Scholar 

  19. Constabel F, Ugi I (2001) Repetitive Ugi reactions. Tetrahedron 57: 5785–5789. doi:10.1016/S0040-4020(01)00516-6

    Article  CAS  Google Scholar 

  20. Dömling A, Ugi I (1993) The seven-component reaction. Angew Chem Int Ed Engl 32: 563–564. doi:10.1002/anie.199305631

    Article  Google Scholar 

  21. Rossen K, Pye PJ, DiMichele LM, Volante RP, Reider PJ (1998) An efficient asymmetric hydrogenation approach to the synthesis of the Crixivan® piperazine intermediate. Tetrahedron Lett 39: 6823–6826. doi:10.1016/S0040-4039(98)01484-1

    Article  CAS  Google Scholar 

  22. Askin D, Eng KK, Rossen K, Purick RM, Wells KM, Volante RP, Reider PJ (1994) Highly diastereoselective reaction of a chiral, non-racemic amide enolate with (S)-glycidyl tosylate. Synthesis of the orally active HIV-1 protease inhibitor L-735,524. Tetrahedron Lett 35: 673–676. doi:10.1016/S0040-4039(00)75787-X

    Article  CAS  Google Scholar 

  23. Endo A, Yanagisawa A, Abe M, Tohma S, Kan T, Fukuyama T. (2002) Total synthesis of Ecteinascidin 743. J Am Chem Soc 124: 6552–6554. doi:10.1021/ja0571794

    Article  CAS  PubMed  Google Scholar 

  24. Hulme C, Dietrich J (2009) Emerging molecular diversity from the intra-molecular Ugi reaction: iterative efficiency in medicinal chemistry. Mol Divers 13: 195–207. doi:10.1007/s11030-009-9111-6

    Article  CAS  PubMed  Google Scholar 

  25. Program Reactor, Chemaxon Kft., 1037 Budapest, Hungary, http://www.chemaxon.com

  26. Weber L (2005) Current status of virtual combinatorial library design. QSAR Comb Sci 24: 809–823. doi:10.1002/qsar.200510120

    Article  CAS  Google Scholar 

  27. Rothweiler U, Czarna A, Krajewski M, Ciombor J, Kalinski C, Khazak V, Ross G, Skoboleva N, Weber L, Holak TA (2008) Isoquinolin-1-one inhibitors of the MDM2–p53 interaction. ChemMedChem 3: 1118–1128. doi:10.1002/cmdc.200800025

    Article  CAS  PubMed  Google Scholar 

  28. Chen J, Marechal V, Levine AJ (1993) Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 13: 4107– 4114

    CAS  PubMed  Google Scholar 

  29. Wasylyk C, Salvi R, Argentini M, Dureuil C, Delumeau I, Abecassis J, Debussche L, Wasylyk B (1999) p53 mediated death of cells overexpressing MDM2 by an inhibitor of MDM2 interaction with p53. Oncogene 18: 1921–1934. doi:10.1038/sj.onc.1202528

    Article  CAS  PubMed  Google Scholar 

  30. Tortora G, Caputo R, Damiano V, Bianco R, Chen J, Agrawal S, Bianco AR, Ciardiello F (2000) A novel MDM2 anti-sense oligonucleotide has anti-tumor activity and potentiates cytotoxic drugs acting by different mechanisms in human colon cancer. Int J Cancer 88: 804–809. doi:10.1002/1097-0215(20001201)88:5<804::AID-IJC19>3.0.CO;2-Z

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Z, Li M, Wang H, Agrawal S, Zhang R (2003) Antisense therapy targeting MDM2 oncogene in prostate cancer: Effects on proliferation, apoptosis, multiple gene expression, and chemotherapy. Proc Natl Acad Sci USA 2003: 100, 11636–11641. doi:10.1073/pnas.1934692100

    Google Scholar 

  32. Böttger A, Böttger V, Sparks A, Liu WL, Howard SF, Lane DP (1997) Design of a synthetic MDM2-binding mini protein that activates the p53 response in vivo. Curr Biol 7: 860–869. doi:10.1016/S0960-9822(06)00374-5

    Article  PubMed  Google Scholar 

  33. Chène P (2003) Inhibiting the p53–MDM2 interaction: an important target for cancer therapy. Nat Rev Cancer 3: 102–109. doi:10.1038/nrc991

    Article  PubMed  Google Scholar 

  34. Deng J, Dayam R, Neamati N (2006) Patented small molecule inhibitors of p53–MDM2 interaction. Expert Opin Ther Pat 16: 165–188. doi:10.1517/13543776.16.2.165

    Article  CAS  PubMed  Google Scholar 

  35. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848. doi:10.1126/science.1092472

    Article  CAS  PubMed  Google Scholar 

  36. Sheridan RP, Shpungin J (2004) Calculating similarities between biological activities in the MDL drug Data Report database. J Chem Inf Comput Sci 44: 727–740. doi:10.1021/ci034245h

    CAS  PubMed  Google Scholar 

  37. Program toto2 simsearch, Ontochem GmbH, 06120 Haale, Germany, http://www.ontochem.com

  38. Huang B, Schroeder M (2006) LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct Biol 6: 19–29. doi:10.1186/1472-6807-6-19

    Article  PubMed  Google Scholar 

  39. Cushman M, Gentry J, Dekow FW (1977) Condensation of imines with homophthalic anhydrides. A convergent synthesis of cis- and trans-13-methyltetrahydroprotoberberines. J Org Chem 42: 1111–1116. doi:10.1021/jo00427a001

    Article  CAS  PubMed  Google Scholar 

  40. Weber L, Illgen K, Almstetter M (1999) Discovery of new multi component reactions with combinatorial methods. Synlett 3: 366–374. doi:10.1055/s-1999-2612

    Article  Google Scholar 

  41. Amatore C, Jutand A (2000) Anionic Pd(0) and Pd(II) intermediates in palladium-catalyzed Heck and cross-coupling reactions. Acc Chem Res 33: 314–321. doi:10.1021/ar980063a

    Article  CAS  PubMed  Google Scholar 

  42. Krause N (1996) Metallorganische chemie. Spektrum Akad Verl, Heidelberg

    Google Scholar 

  43. Dounay AB, Overmann LE (2003) The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem Rev 103: 2945–2963. doi:10.1021/cr020039h

    Article  CAS  PubMed  Google Scholar 

  44. Terpko MO, Heck RF (1979) Rearrangement in the palladium-catalyzed cyclization of alpha-substituted N-acryloyl-o-bromoanilines. J Am Chem Soc 101: 5281–5283. doi:10.1021/ja00512a028

    Article  CAS  Google Scholar 

  45. Mori M, Ban Y (1979) Reactions and syntheses with organometallic compounds. X. The intramolecular cyclization using arylpalladium complexes for generation of nitrogen-heterocycles. Tetrahedron Lett 20: 1133–1136. doi:10.1016/S0040-4039(01)86083-4

    Article  Google Scholar 

  46. Wolfe JP, Rennels RA, Buchwald SL (1996) Intramolecular palladium-catalyzed aryl amination and aryl amidation. Tetrahedron 52: 7525–7546. doi:10.1016/0040-4020(96)00266-9

    Article  CAS  Google Scholar 

  47. Yang BH, Buchwald S (1999) The development of efficient protocols for the palladium-catalyzed cyclization reactions of secondary amides and carbamates. Org Lett 1: 35–37. doi:10.1021/ol9905351

    Article  CAS  PubMed  Google Scholar 

  48. Hoogenband A, Den Hartog JAJ, Lange JHM, Terpstra JW (2004) A novel synthesis of N-(piperidin-4-yl)-1,3-dihydroindol-2-one via an intramolecular Pd-catalyzed amination. Tetrahedron Lett 45: 8535–8537. doi:10.1016/j.tetlet.2004.09.121

    Article  Google Scholar 

  49. Yang BH, Buchwald SL (1999) amination of aryl halides and sulfonates. J Organomet Chem 576: 125–146. doi:10.1016/S0022-328X(98)01054-7

    Article  CAS  Google Scholar 

  50. Gracias V, Moore JD, Djuric SW (2004) Sequential Ugi/Heck cyclization strategies for the facile construction of highly functionalized N-heterocyclic scaffolds. Tetrahedron Lett 45: 417–420. doi:10.1016/j.tetlet.2003.10.147

    Article  CAS  Google Scholar 

  51. Umkehrer M, Kalinski C, Kolb J, Burdack C (2006) A new and versatile one-pot synthesis of indol-2-ones by a novel Ugi-four-component-Heck reaction. Tetrahedron Lett 47: 2391–2393. doi:10.1016/j.tetlet.2006.01.149

    Article  CAS  Google Scholar 

  52. Kalinski C, Umkehrer M, Schmidt J, Ross G, Kolb J, Burdack C, Hiller W, Hoffmann SD (2006) A novel one-pot synthesis of highly diverse indole scaffolds by the Ugi-Heck reaction. Tetrahedron Lett 47: 4683–4686. doi:10.1016/j.tetlet.2006.04.127

    Article  CAS  Google Scholar 

  53. Kalinski C, Umkehrer M, Ross G, Kolb J, Burdack C, Hiller W (2006) Highly substituted indol-2-ones, quinoxalin-2-ones and benzodiazepin-2,5-diones via a new Ugi(4CR)-Pd assisted N-aryl amidation. Tetrahedron Lett 47: 3423–3426. doi:10.1016/j.tetlet.2006.03.069

    Article  CAS  Google Scholar 

  54. Bonnaterre F, Bois-Choussy M, Zhu J (2006) Rapid access to oxindoles by the combined use of an Ugi four-component reaction and a microwave-assisted intramolecular Buchwald–Hartwig amidation reaction. Org Lett 8: 4351–4354. doi:10.1021/ol061755z

    Article  CAS  PubMed  Google Scholar 

  55. Spatz JH, Umkehrer M, Bardin J, Ross G, Burdack C, Kolb J, Bach Th (2007) Diversity oriented synthesis of benzoxazoles and benzothiazoles. Tetrahedron Lett 48: 9030–9034. doi:10.1016/j.tetlet.2007.10.067

    Article  CAS  Google Scholar 

  56. Evindar G, Batey RA (2006) Parallel synthesis of a library of benzoxazoles and benzothiazoles using ligand-accelerated copper-catalyzed cyclizations of ortho-halobenzanilides. J Org Chem 71: 1802–1808. doi:10.1021/jo051927q

    Article  CAS  PubMed  Google Scholar 

  57. Muci AR, Buchwald SL (2002) Practical palladium catalysts for C–N and C–O bond formation. Top Curr Chem 219: 131–209. doi:10.1007/3-540-45313-X_5

    Article  CAS  Google Scholar 

  58. Hartwig JF (1998) Transition metal catalyzed synthesis of arylamines and aryl ethers from aryl halides and triflates: scope and mechanism. Angew Chem Int Ed 37: 2046–2067. doi:10.1002/(SICI)1521-3773(19980817)37:15<2046::AID-ANIE2046>3.0.CO;2-L

    Article  CAS  Google Scholar 

  59. Beletskaya IP, Cheprakov AV (2004) Copper in cross-coupling reactions: the post-Ullmann chemistry. Coord Chem Rev 248: 2337–2364. doi:10.1016/j.ccr.2004.09.014

    Article  CAS  Google Scholar 

  60. Nelson TD, Crouch RD (2004) Cu, Ni, and Pd mediated homocoupling reactions in biaryl syntheses: the Ullmann reaction. Org React 63: 265–555. doi:10.1002/0471264180.or063.03

    CAS  Google Scholar 

  61. Ley SV, Thomas AW (2003) Modern synthetic methods for copper-mediated C(aryl)–O, C(aryl)–N, and C(aryl)–S bond formation. Angew Chem Int Ed 42: 5400–5449. doi:10.1002/anie.200300594

    Article  CAS  Google Scholar 

  62. Kunz K, Scholz U, Ganzer D (2003) Renaissance of Ullmann and Goldberg reactions—progress in Copper catalyzed C–N–, C–O– and C–S-coupling. Synlett 15: 2428–2439. doi:10.1055/s-2003-42473

    Article  Google Scholar 

  63. Hassan J, Sevignon M, Gozzi C, Schulz E, Lemaire M (2002) Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem Rev 102: 1359–1470. doi:10.1021/cr000664r

    Article  CAS  PubMed  Google Scholar 

  64. Finet JP, Fedorov AY, Combes S, Boyer G (2002) Recent advances in Ullmann reaction: copper (II) diacetate catalysed N-, O- and S-arylation involving polycoordinate heteroatomic derivatives. Curr Org Chem 6: 597–626. doi:10.2174/1385272023374058

    Article  CAS  Google Scholar 

  65. Cristau HJ, Cellier PP, Spindler JF, Taillefer M (2004) Highly efficient and mild copper-catalyzed N- and C-arylations with aryl bromides and iodides. Chem Eur J 10: 5607–5622. doi:10.1002/chem.200400582

    Article  CAS  Google Scholar 

  66. Cohen T, Wood J, Dietz AG Jr (1974) Organocopper intermediates in the exchange reaction of aryl halides with salts of copper(I). The possible role of copper(III). Tetrahedron Lett 15: 3555–3558. doi:10.1016/S0040-4039(01)91965-3

    Article  Google Scholar 

  67. Cohen T, Cristea I (1976) Kinetics and mechanism of the copper(I)-induced homogeneous Ullmann coupling of o-bromonitrobenzene. J Am Chem Soc 98: 748–753. doi:10.1021/ja00419a018

    Article  CAS  Google Scholar 

  68. Allred GD, Liebeskind LS (1996) Copper-mediated cross-coupling of organostannanes with organic iodides at or below room temperature. J Am Chem Soc 118: 2748–2749. doi:10.1021/ja9541239

    Article  CAS  Google Scholar 

  69. Tempest P, Ma V, Kelly MG, Jones W, Hulme C (2001) MCC/S N Ar methodology. Part 1: novel access to a range of heterocyclic cores. Tetrahedron Lett 42: 4963–4968. doi:10.1016/S0040-4039(01)00920-0

    Article  CAS  Google Scholar 

  70. Tempest P, Pettus L, Gore V, Hulme C (2003) MCC/S N Ar methodology. Part 2: novel three-step solution phase access to libraries of benzodiazepines. Tetrahedron Lett 44: 1947–1950. doi:10.1016/S0040-4039(03)00084-4

    Article  CAS  Google Scholar 

  71. Kalinski C, Umkehrer M, Gonnard S, Jäger N, Ross G, Hiller W (2006) A new and versatile Ugi/SNAr synthesis of fused 4,5-dihydrotetrazolo[1,5-a]quinoxalines. Tetrahedron Lett 47: 2041–2044. doi:10.1016/j.tetlet.2006.01.027

    Article  CAS  Google Scholar 

  72. Ugi I, Steinbrückner C (1961) Isonitrile, II. Reaktion von Isonitrilen mit Carbonylverbindungen, Aminen und Stickstoffwasserstoffsäure. Chem Ber 94: 734–742. doi:10.1002/cber.19610940323

    Article  CAS  Google Scholar 

  73. Ugi I (1962) The α-addition of immonium ions and anions to isonitriles accompanied by secondary reactions. Angew Chem Int Ed Engl 1: 8–21. doi:10.1002/anie.196200081

    Article  Google Scholar 

  74. Wright DL, Robotham CV, Aboud K (2002) Studies on the sequential multi-component coupling/Diels–Alder cycloaddition reaction. Tetrahedron Lett 43: 943–946. doi:10.1016/S0040-4039(01)02299-7

    Article  CAS  Google Scholar 

  75. Spatz JH, Umkehrer M, Kalinski C, Ross G, Burdack C, Kolb J, Bach T (2007) Combinatorial synthesis of 4-oxo-4H-imidazo[1,5-a]quinoxalines and 4-oxo-4H-pyrazolo[1,5-a]quinoxalines. Tetrahedron Lett 48: 8060–8064. doi:10.1016/j.tetlet.2007.09.015

    Article  CAS  Google Scholar 

  76. Kalinski C, Lemoine H, Schmidt J, Burdack C, Kolb J, UmkehrerM Ross G (2008) Multicomponent reactions as a powerful tool for generic drug synthesis. Synthesis 24: 4007–4011. doi:10.1055/s-0028-1083239

    Article  Google Scholar 

  77. Gurbel PA, O’Connor CM, Cummings CC, Serebruany VL (1999) Clopidogtel: the future choice for preventing platelet activation during coronary stenting. Pharmacol Res 40: 107–111. doi:10.1006/phrs.1999.0478

    Article  CAS  PubMed  Google Scholar 

  78. Jacobson AK (2004) Platelet ADP receptor antagonists: ticlopidine and clopidogrel. Best Pract Res Clin Haematol 17: 55–64. doi:10.1016/j.beha.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  79. http://www.imshealth.com/deployedfiles/imshealth/Global/Content/StaticFile/Top_Line_Data/Top10GlobalProducts.pdf

  80. Ugi I, Meyer R, Fetzer U, Steinbrückner C (1959) Versammlungsberichte. Angew Chem 71: 386–392. doi:10.1002/ange.19590711110

    Google Scholar 

  81. Dömling A, Ugi I (2000) Multikomponentenreaktionen mit isocyaniden. Angew Chem 112: 3300–3344. doi:10.1002/1521-3757(20000915)112:18<3300::AID-ANGE3300>3.0.CO;2-Z

    Article  Google Scholar 

  82. Keating TA, Armstromg W (1996) Postcondensation modifications of Ugi four-component condensation products: 1-Isocyanocyclohexene as a convertible isocyanide. Mechanism of conversion, synthesis of diverse structures, and demonstration of resin capture. J Am Chem Soc 118: 2574–2583. doi:10.1021/ja953868b

    Article  CAS  Google Scholar 

  83. Petasis NA, Akritopoulou I (1993) The boronic acid mannich reaction: a new method for the synthesis of geometrically pure allylamines. Tetrahedron Lett 34: 583–586. doi:10.1016/S0040-4039(00)61625-8

    Article  CAS  Google Scholar 

  84. Petasis NA, Zavialov IA (1997) A new and practical synthesis of α-amino acids from alkenyl boronic acids. J Am Chem Soc 119: 445–446. doi:10.1021/ja963178n

    Article  CAS  Google Scholar 

  85. Masiello D, Cheng S, Bubley GJ, Lu ML, Balk SP (2002) Bicalutamide functions as an androgen receptor antagonist by assembly of a transcriptionally inactive receptor. J Biol Chem 29: 26321–26326. doi:10.1074/jbc.M203310200

    Article  Google Scholar 

  86. Hodgson MC, Astapova I, Hollenberg AN, Balk SP (2007) Activity of androgen receptor antagonist bicalutamide in prostate cancer cells is independent of NCoR and SMRT corepressors. Cancer Res 67: 8388–8395. doi:10.1158/0008-5472

    Article  CAS  PubMed  Google Scholar 

  87. Banfi L, Riva R (2005) The Passerini reaction. Org React 65: 1–140. doi:10.1002/0471264180.or065.01

    CAS  Google Scholar 

  88. Carofiglio T, Cozzi PG, Floriani C (1993) Nonorganometallic pathway of the Passerini reaction assisted by titanium tetrachloride. Organometallics 12: 2726–2736. doi:10.1021/om00031a047

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Kalinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinski, C., Umkehrer, M., Weber, L. et al. On the industrial applications of MCRs: molecular diversity in drug discovery and generic drug synthesis. Mol Divers 14, 513–522 (2010). https://doi.org/10.1007/s11030-010-9225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-010-9225-x

Keywords

Navigation