Skip to main content
Log in

Supported heteropoly acids offering strong option for efficient and cleaner processing for the synthesis of imidazole derivatives under solvent-free condition

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of 12-phosphotungstic acid (PWA) supported on various porous carriers, such as silica, alumina, titania, clay, and carbon were prepared, and their catalytic performance evaluated in the synthesis of imidazoles in solvent-free condition. It was found that PWA supported on silica (PWA/SiO2) showed higher activity compared to other catalysts. The observed behavior has more or less correlated with the acidic characteristic found through the potentiometrically titrated acidic sites and proton availability. The catalyst was characterized by FTIR, XRD, TGA/DSC, BET, and SEM. The presence of the Keggin structure can be followed by the above techniques, eliminating any doubt about the collapse of the supported anion. It can be observed that the process tolerates both electron donating and electron withdrawing substituents on the aldehyde with both benzil and benzoin. The general applicability of the method is demonstrated by using both benzylic and aromatic amines. The yields obtained were excellent without forming any side products such as trisubstituted imidazoles, which are normally produced in the presence of strong acids. The protocol developed using PWA/SiO2 is superior in terms of process simplicity, reusable catalyst, high yields, short reaction time, and preclusion of toxic solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98: 199–218. doi:10.1021/cr960401q

    Article  PubMed  CAS  Google Scholar 

  2. Müller A, Roy S (2003) En route from the mystery of molybdenum blue via related manipulatable building blocks to aspects of materials science. Coord Chem Rev 245: 153–166. doi:10.1016/S0010-8545(03)00110-3

    Article  Google Scholar 

  3. Liu TB, Diemann E, Li HL, Dress AWM, Müller A (2003) Self-assembly in aqueous solution of wheel-shaped Mo154 oxide clusters into vesicles. Nature 426: 59–61. doi:10.1038/nature02036

    Article  PubMed  CAS  Google Scholar 

  4. Frantz DE, Morency L, Soheili A, Murry JA, Grabowski EJJ, Tillyer RD (2004) Synthesis of substituted imidazoles via organocatalysis. Org Lett 6: 843–846. doi:10.1021/ol0498803

    Article  PubMed  CAS  Google Scholar 

  5. Sisko J, Mellinger M (2002) Development of a general process for the synthesis of highly substituted imidazoles. Pure Appl Chem 74: 1349–1358. doi:10.1351/pac200274081349

    Article  CAS  Google Scholar 

  6. Nelson WM (1998) Green chemistry. Oxford University Press, Oxford

    Google Scholar 

  7. Liu J, Chem J, Zhao J, Zhao Y, Li L, Zhang H (2003) A modified procedure for the synthesis of 1-arylimidazoles. Synthesis 2661–2666. doi:10.1055/s-2003-42444

  8. Tanaka K, Toda F (2000) Solvent-free organic synthesis. Chem Rev 100: 1025–1074. doi:10.1021/cr940089p

    Article  PubMed  CAS  Google Scholar 

  9. Cave GWV, Raston CL, Scott JL (2001) Recent advances in solventless organic reactions: towards benign synthesis with remarkable versatility. Chem Commun 2159–2169. doi:10.1039/b106677n

  10. Cui B, Zheng BL, He K, Zheng QY (2003) Imidazole alkaloids from Lepidium meyenii. J Nat Prod 66: 1101–1103. doi:10.1021/np030031i

    Article  PubMed  CAS  Google Scholar 

  11. Abrahams SL, Hazen RJ, Batson AG, Phillips AP (1989) Trifenagrel: a chemically novel platelet aggregation inhibitor. J Pharmacol Exp Ther 249: 359–365. doi:10.1042/jpet.106.113084

    PubMed  CAS  Google Scholar 

  12. Phillips AP, White HL, Rosen S (1982) European Patent 58890 (A1)

  13. Misono M (2001) Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solid state. Chem Commun 1141–1153. doi:10.1039/b102573m

  14. Blank JW, Durant GJ, Emmett JC, Ganellin CR (1974) Sulphur-methylene isosterism in the developent of metiamide, a new histamine H2-receptor antagonist. Nature 248: 65–67. doi:10.1038/248065a0

    Article  Google Scholar 

  15. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal M, Heys JR, Landvatter SW, Strickler JE, McLaughlin MM, Siemens IR, Fisher SM, Livi JP, White JR, Adams JL, Young PR (1994) A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739–745. doi:10.1038/372739a0

    Article  PubMed  CAS  Google Scholar 

  16. Maier T, Schmierer R, Bauer K, Bieringer H, Buerstell H, Sachse B (1989) US Patent, 4 820 335.

  17. Schmierer R, Mildenberger H, Buerstell H (1987) German Patent 361:464

  18. Heeres J, Backx LJJ, Mostmans JH, Van Custem J (1979) Antimycotic imidazoles. Part 4: synthesis and antifungal activity of ketoconazole, a new potent orally active broad-spectrum antifungal agent. J Med Chem 22: 1003–1005. doi:10.1021/jm00194a023

    Article  PubMed  CAS  Google Scholar 

  19. Antolini M, Bozzoli A, Ghiron C, Kennedy G, Rossi T, Ursini A (1999) Analogues of 4,5-bis(3,5-dichlorophenyl)-2-trifluoromethyl-1H-imidazole as potential antibacterial agents. Bioorg Med Chem Lett 9: 1023–1028 PII:S0960-894X(99)00112-2

    Article  PubMed  CAS  Google Scholar 

  20. Liberatore A, Schulz J, Pommier J, Barthelemy M, Huchet M, Chabrier P, Bigg D (2004) 2-Alkyl-4-arylimidazoles: structurally novel sodium channel modulators. Bioorg Med Chem Lett 14: 3521–3523. doi:10.1016/j.bmcl.2004.04.059

    Article  PubMed  CAS  Google Scholar 

  21. Cheung DW, Daniel EE (1980) Imidazole inhibits a temperature-dependent component of mammalian skeletal muscle action potential. Nature 283: 485–486. doi:10.1038/283485a0

    Article  PubMed  CAS  Google Scholar 

  22. de Laszlo SE, Hacker C, Li B, Kim D, MacCoss M, Mantlo N, Pivnichny JV, Colwell L, Koch GE, Cascieri MA, Hagmann WK (1999) Potent, orally absorbed glucagon receptor antagonists. Bioorg Med Chem Lett 9: 641–646 PII: S0960-894X(99)00081-5

    Article  PubMed  Google Scholar 

  23. Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley VCH, Weinheim

    Google Scholar 

  24. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99: 2071–2084. doi:10.1021/cr980032t

    Article  PubMed  CAS  Google Scholar 

  25. Lee HL, Bang M, Pak CS (2005) Efficient synthesis of arylsulfamides by reaction of amines with arylsulfamoyl imidazolium triflate. Tetrahedron Lett 46: 7139–7142. doi:10.1016/j.tetlet.2005.08.092

    Article  CAS  Google Scholar 

  26. Storey JMD, Williamson C (2005) Imidazole based solid-supported catalysts for the benzoin condensation. Tetrahedron Lett 46: 7337–7339. doi:10.1016/j.tetlet.2005.08.141

    Article  CAS  Google Scholar 

  27. Herrmann WA (2002) N-Heterocyclic carbenes: a new concept in organometallic catalysis. Angew Chem Int Ed 41: 1290–1309. doi:10.1002/1521-3773(20020415)41:8<1290::AID-ANIE1290>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  28. Bourissou D, Guerret O, Gabbaï FP, Bertrand G (2000) Stable carbenes. Chem Rev 100: 39–92. doi:10.1021/cr940472u

    Article  PubMed  CAS  Google Scholar 

  29. Herrmann WA, Köcher C (1997) N-Heterocyclic carbenes. Angew Chem Int Ed Eng 36: 2162–2187. doi:10.1002/anie.199721621

    Article  CAS  Google Scholar 

  30. Kantevari S, Vuppalapati SVN, Biradar DO, Nagarapu L (2007) Highly efficient, one-pot, solvent-free synthesis of tetrasubstituted imidazoles using HClO4–SiO2 as novel heterogeneous catalyst. J Mol Catal A 266: 109–113. doi:10.1016/j.molcata.2006.10.048

    Article  CAS  Google Scholar 

  31. Sarshar S, Siev D, Mjalli AMM (1996) Imidazole libraries on solid support. Tetrahedron Lett 37: 835–838. doi:10.1016/0040-4039(95)02334-8

    Article  CAS  Google Scholar 

  32. Acke DRJ, Orru RVA, Stevens CV (2006) Continuous synthesis of tri- and tetrasubstituted imidazoles via a multicomponent reaction under microreactor conditions. QSAR Comb Sci 25: 474–483. doi:10.1002/qsar.200540194

    Article  CAS  Google Scholar 

  33. Nagarapu L, Apuri S, Kantevari S (2007) Potassium dodecatugstocobaltate trihydrate (K5CoW12O40·3H2O): a mild and efficient reusable catalyst for the one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles under conventional heating and microwave irradiation. J Mol Catal A 266: 104–108. doi:10.1016/j.molcata.2006.10.056

    Article  CAS  Google Scholar 

  34. Balalaie S, Hashemi MM, Akhbari M (2003) A novel one-pot synthesis of tetrasubstituted imidazoles under solvent-free conditions and microwave irradiation. Tetrahedron Lett 44: 1709–1711 PII: S0040-4039(03)00018-2

    Article  CAS  Google Scholar 

  35. Karimi AR, Alimohammadi Z, Azizian J, Mohammadi AA, Mhammadizadeh MR (2006) Solvent-free synthesis of tetrasubstituted imidazoles on silica gel/NaHSO4 support. Catal Commun 7: 728–732. doi:10.1016/j.catcom.2006.04.004

    Article  CAS  Google Scholar 

  36. Heravi MM, Derikvand F, Bamoharram FF (2007) Highly efficient, four-component one-pot synthesis of tetrasubstituted imidazoles using Keggin-type heteropolyacids as green and reusable catalysts. J Mol Catal A 263: 112–114. doi:10.1016/j.molcata.2006.08.048

    Article  CAS  Google Scholar 

  37. Kidwai M, Mothsra P (2006) A one-pot synthesis of 1,2,4,5-tetraarylimidazoles using molecular iodine as an efficient catalyst. Tetrahedron Lett 47: 5029–5031. doi:10.1016/j.tetlet.2006.05.097

    Article  CAS  Google Scholar 

  38. Balalaie S, Arabanian A (2000) One-pot synthesis of tetrasubstituted imidazoles catalyzed by zeolite HY and silica gel under microwave irradiation. Green Chem 2: 274–276. doi:10.1039/b006201o

    Article  CAS  Google Scholar 

  39. Sadeghi B, Mirjalili BBF, Hashemi MM (2008) A one-pot synthesis of 1,2,4,5-tetraarylimidazoles using molecular iodine as an efficient catalyst. Tetrahedron Lett 49: 2575–2577. doi:10.1016/j.tetlet.2008.02.100

    Article  CAS  Google Scholar 

  40. Rafiee E, Rashidzadeh S, Azad A (2007) Silica-supported heteropoly acids: highly efficient catalysts for synthesis of α-aminonitriles, using trimethylsilyl cyanide or potassium cyanide. J Mol Catal A 261: 49–52. doi:10.1016/j.molcata.2006.07.058

    Article  CAS  Google Scholar 

  41. Rafiee E, Paknezhad F, Shahebrahimi S, Joshaghani M, Eavani S, Rashidzadeh S (2008) Acid catalysis of different supported heteropoly acids for a one-pot synthesis of β-acetamido ketones. J Mol Catal A 282: 92–98. doi:10.1016/j.molcata.2007.11.021

    Article  CAS  Google Scholar 

  42. McKillop A, Swann BP, Taylor EC (1973) Thallium in organic synthesis. XXXVIII. Oxidation of chalcones, deoxybenzoins, and benzoins with thallium(III) nitrate (TTN). J Am Chem Soc 95: 3641–3645. doi:10.1021/ja00792a029

    Article  CAS  Google Scholar 

  43. Park S, Know OH, Kim S, Park S, Choi MG, Cha M, Park SY, Jang DJ (2005) Imidazole-based excited-state intramolecular proton-transfer materials: synthesis and amplified spontaneous emission from a large single crystal. J Am Chem Soc 127: 10070–10074. doi:10.1021/ja0508727

    Article  PubMed  CAS  Google Scholar 

  44. Rafiee E, Shahbazi F, Joshaghani M, Tork F (2005) The silica supported H3PW12O40 (a heteropoly acid) as an efficient and reusable catalyst for a one-pot synthesis of β-acetamido ketones by Dakin–West reaction. J Mol Catal A 242: 129–134. doi:10.1016/j.molcata.2005.08.005

    Article  CAS  Google Scholar 

  45. Kozhevnikova EF, Rafiee E, Kozhevnikov V (2004) Fries rearrangement of aryl esters catalysed by heteropoly acid: catalyst regeneration and reuse. Appl Catal A 260: 25–34. doi:10.1016/j.apcata.2003.10.008

    Article  CAS  Google Scholar 

  46. Wlodarczyk R, Chojak M, Miecznikowski K, Kolary A, Kulesza PJ, Marassi R (2006) Electroreduction of oxygen at polyoxometallate-modified glassy carbon-supported Pt nanoparticles. J Power Sources 159: 802–809. doi:10.1016/j.jpowsour.2005.11.061

    Article  CAS  Google Scholar 

  47. Ojani R, Rahmanifar M, Naderi P (2008) Electrocatalytic reduction of nitrite by phosphotungstic heteropolyanion. Application for its simple and selective determination. Electroanalysis 20: 1092–1098. doi:10.1002/elan.200704157

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezzat Rafiee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rafiee, E., Mahdavi, H. & Joshaghani, M. Supported heteropoly acids offering strong option for efficient and cleaner processing for the synthesis of imidazole derivatives under solvent-free condition. Mol Divers 15, 125–134 (2011). https://doi.org/10.1007/s11030-009-9213-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-009-9213-1

Keywords

Navigation