Skip to main content
Log in

KSF: an efficient catalyst for the regioselective synthesis of 1,5-diaryl pyrazoles using Baylis–Hillman adducts

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A facile and convenient protocol was developed for the regioselective synthesis of 1,5-diarylpyrazoles using Baylis–Hillman adducts over KSF catalyst in high yields (70–90%) and low reaction times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Basavaiah D, Rao AJ, Krishnamacharyulu M (2002) Methanolic trimethylamine mediated Baylis–Hillman reaction. Arkivoc VII: 136–145

    Google Scholar 

  2. Nascimento MG, Zanotto SP, Melegari SP, Fernandes L, Mandolesi Sá M (2003) Resolution of α-methylene-β-hydroxy esters catalyzed by free and immobilized Pseudomonas sp. lipase. Tetrahedron Asymmetry 14: 3111–3115. doi:10.1016/j.tetasy.2003.08.015

    Article  CAS  Google Scholar 

  3. Roush WR, Brown BB (1993) Studies on the synthesis of kijanolide: synthesis of the 2-acyl spirotetronate and investigations concerning the coupling of the top and bottom half fragments. J Org Chem 58: 2162–2172. doi:10.1021/jo00060a036

    Article  CAS  Google Scholar 

  4. Langer P (2000) New strategies for the development of an asymmetric version of the Baylis–Hillman reaction. Angew Chem Int Ed 39: 3049–3052. doi:10.1002/1521-3773(20000901)39:17<3049::AID-ANIE3049>3.0.CO;2-5

    Article  CAS  Google Scholar 

  5. Kim JN, Kim HS, Gong JH, Chung YM (2001) Synthesis of N-substituted 1,4-dihydroquinolines from the Baylis–Hillman acetates via the successive SN2′–SNAr isomerization strategy. Tetrahedron Lett 42: 8341–8344. doi:10.1016/S0040-4039(01)01791-9

    Article  CAS  Google Scholar 

  6. Iwabuchi Y, Furukawa M, Esumi T, Hatakeyama S (2001) An enantio- and stereocontrolled synthesis of (–)-mycestericin E via cinchona alkaloid-catalyzed asymmetric Baylis–Hillman reaction. Chem Commun (Camb) 19: 2030–2031. doi:10.1039/b106471c

    Article  Google Scholar 

  7. Ameer F, Drewes SE, Hoole R, Kaye PT, Pitchford AT (1985) Necic acid synthons. Part 5. Total synthesis of (±)-retronecic acid and related compounds via zinc-mediated coupling of halogeno-esters. J Chem Soc Perkin Trans 1: 2713–2719. doi:10.1039/p19850002713

    Article  Google Scholar 

  8. Hoffmann HMR, Rabe J (1985) DABCO-catalyzed coupling of aldehydes with activated double bonds. 4. Stereoselective synthesis of trisubstituted olefins and terpenoid building blocks via 2-(hydroxyalkyl)-2-propenoic esters. J Org Chem 50: 3849–3859. doi:10.1021/jo00220a034

    Article  CAS  Google Scholar 

  9. Cheskis BA, Moiseenkov AM, Shpiro NA, Stashina GA, Zhulin VM (1990) A facile synthesis of chromeno[4,3- b]pyrroles derived from allyl derivatives of Baylis–Hillman adducts through intramolecular 1,3-dipolar cycloaddition using ultrasonication. Bull Acad Sci USSR Div Chem Sci (Engl Trasl) 39: 716–720

    Article  Google Scholar 

  10. Kaye PT, Nocanda XW (2002) A convenient general synthesis of 3-substituted 2H-chromene derivatives. J Chem Soc Perkin Trans 1: 1318–1323. doi:10.1039/b201827f

    Article  Google Scholar 

  11. Basavaiah D, Sreenivasulu B, Rao AJ (2001) A novel Baylis–Hillman protocol for the synthesis of functionalized fused furans. Tetrahedron Lett 42: 1147–1149. doi:10.1016/S0040-4039(00)02175-4

    Article  CAS  Google Scholar 

  12. Kim JN, Lee HJ, Lee KY, Kim HS (2001) Synthesis of 3-quinolinecarboxylic acid esters from the Baylis–Hillman adducts of 2-halobenzaldehyde N-tosylimines. Tetrahedron Lett 42: 3737–3740. doi:10.1016/S0040-4039(01)00552-4

    Article  CAS  Google Scholar 

  13. Basavaiah D, Rao JS (2004) Applications of Baylis–Hillman acetates: one-pot, facile and convenient synthesis of substituted γ-lactams. Tetrahedron Lett 45: 1621–1625. doi:10.1016/j.tetlet.2003.12.133

    Article  CAS  Google Scholar 

  14. Kim SH, Kim KH, Kim HS, Kim JN (2008) Regioselective synthesis of 1,2,4,5-tetrasubstituted pyridines from Baylis–Hillman adducts via consecutive [3+2+1] annulation protocol. Tetrahedron Lett 49: 1948–1951. doi:10.1016/j.tetlet.2008.01.110

    Article  CAS  Google Scholar 

  15. Park DY, Lee MJ, Kim TH, Kim JN (2005) Regioselective construction of polysubstituted pyridine ring from Baylis–Hillman adducts via sequential introduction of tosylamide, Michael reaction, aldol condensation, and elimination of TsH. Tetrahedron Lett 46: 8799–8803. doi:10.1016/j.tetlet.2005.10.034

    Article  CAS  Google Scholar 

  16. Haddad N, Salvagno A, Busacca C (2004) Application of the palladium-catalyzed N-arylation of hydrazones to deactivated heteroaryl halides in the synthesis of pyrazoles. Tetrahedron Lett 45: 5935–5937. doi:10.1016/j.tetlet.2004.05.038

    Article  CAS  Google Scholar 

  17. Lee KY, Gowrisankar S, Kim JN (2005) Facile synthesis of 2H-indazole derivatives starting from the Baylis–Hillman adducts of 2-cyclohexen-1-one. Tetrahedron Lett 46: 5387–5391. doi:10.1016/j.tetlet.2005.05.149

    Article  CAS  Google Scholar 

  18. Lee KY, Kim JM, Kim JN (2003) Regioselective synthesis of 1,3,4,5-tetrasubstituted pyrazoles from Baylis–Hillman adducts. Tetrahedron Lett 44: 6737–6740. doi:10.1016/S0040-4039(03)01648-4

    Article  CAS  Google Scholar 

  19. Rgan J, Capolino A, Cirillo PF, Gilmore T, Graham AG, Hicky E, Kroe RR, Madwed J, Torcellini C, Tsang M, Moss N (2003) Structure-activity relationships of the p38α MAP kinase inhibitor 1-(5-tert-Butyl-2-p-tolyl-2 H-pyrazol-3-yl)-3-[4-(2-morpholin-4-yl-ethoxy)naph-thalen-1-yl]urea (BIRB 796). J Med Chem 46: 4676–4686. doi:10.1021/jm030121k

    Article  Google Scholar 

  20. Stauffer SR, Coletta CJ, Tedesco R, Nishiguchi G, Carlson K, Sun J, Katzenellenbogen BS, Katzenellenbogen JA (2003) Pyrazole ligands: structure-affinity/activity relationships and estrogen receptor-α-selective agonists. J Med Chem 43: 4934–4947

    Article  Google Scholar 

  21. Huang YR, Katzenellenbogen JA (2000) Regioselective synthesis of 1,3,5-triaryl-4-alkylpyrazoles: novel ligands for the estrogen receptor. Org Lett 2: 2833–2836. doi:10.1021/ol0062650

    Article  PubMed  CAS  Google Scholar 

  22. Haddad N, Baron J (2002) Novel application of the palladium-catalyzed N-arylation of hydrazones to a versatile new synthesis of pyrazoles. Tetrahedron Lett 43: 2171–2173. doi:10.1016/S0040-4039(02)00245-9

    Article  CAS  Google Scholar 

  23. Nair V, Biju AT, Mohanan K, Suresh E (2006) Novel synthesis of highly functionalized pyrazolines and pyrazoles by triphenylphosphine-mediated reaction of dialkyl azodicarboxylate with allenic esters. Org Lett 8: 2213–2216. doi:10.1021/ol0604623

    Article  PubMed  CAS  Google Scholar 

  24. Li Y, Zhang HQ, Liu J, Yang XP, Liu ZJ (2006) Stereoselective synthesis and antifungal activities of (E)-α-(methoxyimino)benzeneacetate derivatives containing 1,3,5-substituted pyrazole ring. J Agric Food Chem 54: 3636–3640. doi:10.1021/jf060074f

    Article  PubMed  CAS  Google Scholar 

  25. Xie F, Cheng G, Hu Y (2006) Three-component, one-pot reaction for the combinatorial synthesis of 1,3,4-substituted pyrazoles. J Comb Chem 8: 286–288. doi:10.1021/cc050159d

    Article  PubMed  CAS  Google Scholar 

  26. Vickerstaffe E, Warrington BH, Ladlow M, Ley SV (2004) Fully automated polymer-assisted synthesis of 1,5-biaryl pyrazoles. J Comb Chem 6: 332–339. doi:10.1021/cc049977g

    Article  PubMed  CAS  Google Scholar 

  27. Deng X, Mani NS (2008) Base-mediated reaction of hydrazones and nitroolefins with a reversed regioselectivity: a novel synthesis of 1,3,4-trisubstituted pyrazoles. Org Lett 10: 1307–1310. doi:10.1021/ol800200j

    Article  PubMed  CAS  Google Scholar 

  28. Alex K, Tillack A, Schwarz N, Beller M (2008) Zinc-catalyzed synthesis of pyrazolines and pyrazoles via hydrohydrazination. Org Lett 10: 2377–2379. doi:10.1021/ol800592s

    Article  PubMed  CAS  Google Scholar 

  29. Wang XJ, Tan J, Zhang L (2000) Regioselective synthesis of unsymmetrical 3,5-dialkyl-1-arylpyrazoles. Org Lett 2: 3107–3109. doi:10.1021/ol0001822

    Article  PubMed  CAS  Google Scholar 

  30. Bauer VJ, Williams RP, Safir SR (1971) Synthesis, alkylation, and oxidation of thieno[3,4-c]- and -[3,2-c]pyrazoles. J Med Chem 14: 454–456. doi:10.1021/jm00287a025

    Article  PubMed  CAS  Google Scholar 

  31. Jie MSFLK, Lau MML (1999) Ultrasound assisted synthesis of pyrazole fatty ester derivatives from a key C18 keto-allenic ester. Chem Phys Lipids 101: 237–242. doi:10.1016/S0009-3084(99)00065-1

    Article  Google Scholar 

  32. Habeeb AG, Rao PNP, Knaus EE (2001) Design and synthesis of celecoxib and rofecoxib analogues as selective cyclooxygenase-2 (COX-2) inhibitors: replacement of sulfonamide and methylsulfonyl pharmacophores by an azido bioisostere. J Med Chem 44: 3039–3042. doi:10.1021/jm010153c

    Article  PubMed  CAS  Google Scholar 

  33. Price MLP, Jorgensen WL (2000) Analysis of binding affinities for celecoxib analogues with COX-1 and COX-2 from combined docking and monte carlo simulations and insight into the COX-2/COX-1 selectivity. J Am Chem Soc 122: 9455–9466. doi:10.1021/ja001018c

    Article  CAS  Google Scholar 

  34. Ballini R, Fiorini D, Victoria Gil M, Palmieri A (2003) Michael addition of α-nitro ketones to conjugated enones under solventless conditions using silica. Green Chem 5: 475–476. doi:10.1039/b306359c

    Article  CAS  Google Scholar 

  35. Rani RV, Srinivas N, Kishan RM, Kulkarni SJ, Raghavan KV (2001) Zeolite-catalyzed cyclocondensation reaction for the selective synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Green Chem 3: 305–306. doi:10.1039/b107612b

    Article  CAS  Google Scholar 

  36. Bigi F, Maggi R, Sartori G, Zambonin E (1998) Reaction of aromatic amines and ethyl acetoacetate promoted by zeolite HSZ-360. Phosgene-free synthesis of symmetric diphenylureas. Chem Commun (Camb) 513–514. doi:10.1039/a708019k

  37. Varma RS (1999) Solvent-free organic syntheses using supported reagents and microwave. Green Chem 1: 43–55. doi:10.1039/a808223e

    Article  CAS  Google Scholar 

  38. Choudhary VR, Patil KY, Jana SK (2004) Acylation of aromatic alcohols and phenols over InCl3/montmorillonite K-10 catalysts. J Chem Sci 116: 175–177. doi:10.1007/BF02708222

    Article  CAS  Google Scholar 

  39. Soriente A, Arienzo R, De Rosa M, Palombi L, Spinella A, Scettri A (1999) K10 montmorillonite catalysis, C–C Bond formation by catalyzed conjugate addition and alkoxyalkylation of 1,3-dicarbonyl compounds. Green Chem 1: 157–162. doi:10.1039/a902102g

    Article  CAS  Google Scholar 

  40. Habibi D, Marvi O (2006) Montmorillonite KSF and montmorillonite K-10 clays as efficient catalysts for the solventless synthesis of bismaleimides and bisphthalimides using microwave irradiation. Arkivoc XIII: 8–15

    Google Scholar 

  41. Krstic LJ, Sukdolak S, Solujic S (2002) An efficient synthesis of warfarin acetals on montmorillonite clay K-10 with microwaves. J Serb Chem Soc 67: 325–329. doi:10.2298/JSC0205325K

    Article  CAS  Google Scholar 

  42. Li A, Li TS, Ding TH (1997) Montmorillonite K-10 and KSF as remarkable acetylation catalysts. Chem Commun (Camb) 1389–1390. doi: 10.1039/a703389c

  43. Yadav JS, Subba Reddy BV, Madan C (2001) Montmorillonite clay-catalyzed stereoselective syntheses of aryl-substituted (E)- and (Z)-allyl iodides and bromides. N J Chem 9: 1114–1117. doi:10.1039/b103850h

    Article  Google Scholar 

  44. Mamaghani M, Badrian A (2004) One-pot easy conversion of Baylis–Hillman adducts into carbamates of unsaturated β-amino acids. Tetrahedron Lett 45: 1547–1550. doi:10.1016/j.tetlet.2003.12.046

    Article  CAS  Google Scholar 

  45. Mamaghani M, Yazdanbakhsh MR, Badrian A, Valizadeh H, Samimi HA (2005) The use of enantiomerically pure α,β-unsaturated N-acyloxazolidin-2-one in diastereselective Baylis–Hillman type reaction mediated by SmI2. Lett Org Chem 2: 721–724. doi:10.2174/157017805774717607

    Article  CAS  Google Scholar 

  46. Mamaghani M, Tabatabaeian K, Mirzaeinejad M, Nikpassand M (2006) One-pot facile conversion of Baylis–Hillman adducts into 1,5-Diarylpyrazoles using microwave irradiation. J Iran Chem Soc 3: 89–92

    CAS  Google Scholar 

  47. Mamaghani M, Badrian A (2004) A conversion of Baylis–Hillman adducts into trimethylsillyl ethers with hexamethyldisilazane catalysed by iodine. Phosphorus Sulfur 179: 1181–1186. doi:10.1080/10426500490459803

    Article  CAS  Google Scholar 

  48. Shi M, Jiang JK, Li CQ (2002) Lewis base and L-proline co-catalyzed Baylis–Hillman reaction of arylaldehydes with methyl vinyl ketone. Tetrahedron Lett 43: 127–130. doi:10.1016/S0040-4039(01)02057-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manouchehr Mamaghani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikpassand, M., Mamaghani, M., Tabatabaeian, K. et al. KSF: an efficient catalyst for the regioselective synthesis of 1,5-diaryl pyrazoles using Baylis–Hillman adducts. Mol Divers 13, 389–393 (2009). https://doi.org/10.1007/s11030-009-9123-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-009-9123-2

Keywords

Navigation