Skip to main content

Advertisement

Log in

Prediction of some important physical properties of sulfur compounds using quantitative structure–properties relationships

  • Full Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In this work, physical properties of sulfur compounds (critical temperature (T c ), critical pressure (P c ), and Pitzer’s acentric factor (ω)) are predicted using quantitative structure–property relationship technique. Sulfur compounds present in petroleum cuts are considered environmental hazards. Genetic algorithm based multivariate linear regression (GA-MLR) is used to select most statistically effective molecular descriptors on the properties. Using the selected molecular descriptors, feed forward neural networks (FFNNs) are applied to develop some molecular-based models to predict the properties. The presented models are quite accurate and can be used to predict the properties of sulfur compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mohammadbeigi K, Tajerian M (2004) Demercaptanization of distillate (DMD). Petrol Coal 46: 17–22

    CAS  Google Scholar 

  2. Zaykina RF, Zaykin YA, Mamonova TB, Nadirov NK (2002) Radiation methods for demercaptanization and desulfurization of oil products. Radiat Phys Chem 63: 621–624 doi:10.1016/S0969-806X(01)00654-5

    Article  CAS  Google Scholar 

  3. Farhat AM, Al-Malki A, El-Ali B, Martinie GN, Siddiqui M (2006) Deep desulphurization of gasoline and diesel fuels using non-hydrogen consuming techniques. Fuel 85: 1354–1363 doi:10.1016/j.fuel.2005.12.006

    Article  CAS  Google Scholar 

  4. Ito E, van Veen JAR (2006) On novel processes for removing sulfur from refinery streams. Catal Today 116: 446–460 doi:10.1016/j.cattod.2006.06.040

    Article  CAS  Google Scholar 

  5. UOP company website, http://www.uop.com

  6. Joback KG (1984) A unified approach to physical property estimation using multivariate statistical techniques. S.M. Thesis, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA

  7. Joback KG, Reid RC (1987) Estimation of pure-components properties from group-contributions. Chem Eng Commun 57: 233–243 doi:10.1080/00986448708960487

    Article  CAS  Google Scholar 

  8. Constantinou L, Gani R (1994) New group contribution method for estimating properties of pure components. AIChE J 40: 1697–1710 doi:10.1002/aic.690401011

    Article  CAS  Google Scholar 

  9. Wilson GM, Jasperson LV (1996) Critical constants 7, P c , estimation based on zero, first and second order methods. AIChE Spring Meeting, New Orleans, LA

  10. Marrero-Marejón J, Pardillo-Fontdevila E (1999) Estimation of pure compound properties using group-interaction contributions. AIChE J 45:615–621. doi:10.1002/aic.690450318

    Article  Google Scholar 

  11. Poling BE, Prausnitz JM, O’Connell JP (2000) The properties of gases and liquids. McGraw-Hill, New York

    Google Scholar 

  12. Katritzky AR, Fara DC (2005) How chemical structure determines physical, chemical, and technological properties: an overview illustrating the potential of quantitative structure–property relationships for fuels science. Energy Fuels 19: 922–935 doi:10.1021/ef040033q

    Article  CAS  Google Scholar 

  13. Project 801, Evaluated process design data, public release documentation. Design Institute for Physical Properties (DIPPR), American Institute of Chemical Engineers (AIChE), 2006

  14. Todeschini R, Consonni V (2000) In: Manhold R, Kubinyi H, Temmerman H (Series editors), Handbook of molecular descriptors. Weinheim, Wiley-VCH

  15. Talete srl, Dragon for Widows (Software for molecular descriptor calculation). Version 5.4-2006- http://www.talete.mi.it/

  16. Hyperchem Release 7.5 for Windows, Molecular modeling system. Hypercube Inc., 2002

  17. Leardi R, Boggia R, Terrile M (1992) Genetic algorithms as a strategy for feature selection. J Chemometr 6: 267–281 doi:10.1002/cem.1180060506

    Article  CAS  Google Scholar 

  18. Gharagheizi F (2007) QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN. Comput Mater Sci 40: 159–167 doi:10.1016/j.commatsci.2006.11.010

    Article  CAS  Google Scholar 

  19. Gharagheizi F (2007) A new accurate neural network quantitative structure–property relationship for prediction of θ (lower critical solution temperature) of polymer solutions. e-Polymers, Article Number 114

  20. Gharagheizi F (2008) A simple equation for prediction of net heat of combustion of pure chemicals. Chemometr Intell Lab 91: 177–180 doi:10.1016/j.chemolab.2007.11.003

    Article  CAS  Google Scholar 

  21. Gharagheizi F (2008) A new molecular-based model for prediction of enthalpy of sublimation of pure components. Thermochim Acta 469: 8–11 doi:10.1016/j.tca.2007.12.005

    Article  CAS  Google Scholar 

  22. Gharagheizi F, Alamdari RF (2008) A molecular-based model for prediction of solubility of C60 ullerene in various solvents. Fuller Nanotub Car N 16: 40–57 doi:10.1080/15363830701779315

    Article  CAS  Google Scholar 

  23. Gharagheizi F (2008) QSPR studies for solubility parameter by means of genetic algorithm-based multivariate linear regression and generalized regression neural network. QSAR Comb Sci 27: 165–170 doi:10.1002/qsar.200630159

    Article  CAS  Google Scholar 

  24. Gharagheizi F, Alamdari RF (2008) Prediction of flash point temperature of pure components using a quantitative structure–property relationship model. QSAR Comb Sci 27: 679–683 doi:10.1002/qsar.200730110

    Article  CAS  Google Scholar 

  25. Gharagheizi F, Fazeli A (2008) Prediction of the Watson characterization factor of hydrocarbon components from molecular properties. QSAR Comb Sci 27: 758–767 doi:10.1002/qsar.200730020

    Article  CAS  Google Scholar 

  26. Gharagheizi F, Mehrpooya M (2007) Prediction of standard chemical exergy by a three descriptors QSPR model. Energy Convers Manage 48: 2453–2460 doi:10.1016/j.enconman.2007.04.005

    Article  CAS  Google Scholar 

  27. Gharagheizi F (in press) A quantitative structure–property relationship for prediction of lower flammability limit percent of pure compounds, Energ Fuel. doi:101021/ef800375b

  28. Vatani A, Mehrpooya M, Gharagheizi F (2007) Prediction of standard enthalpy of formation by a QSPR model. Int J Mol Sci 8:407–432

    Article  CAS  Google Scholar 

  29. Sattari M, Gharagheizi F (2008) Prediction of molecular diffusivity of pure components into air: a QSPR approach. Chemosphere 72: 1298–1302 doi:10.1016/j.chemosphere.2008.04.049

    Article  PubMed  CAS  Google Scholar 

  30. Todeschini R, Consonni V, Maiocchi A (1999) The K correlation index: theory development and its application in chemometrics. Chemometr Intell Lab 46: 13–29 doi:10.1016/S0169-7439(98)00124-5

    Article  CAS  Google Scholar 

  31. Taskinen J, Yliruusi J (2003) Prediction of physicochemical properties based on neural network modeling. Adv Drug Deliv Rev 55: 1163–1183 doi:10.1016/S0169-409X(03)00117-0

    Article  PubMed  CAS  Google Scholar 

  32. Karelson M, Dobchev AD, Kulshyn OV, Katritzky AR (2006) Neural networks convergence using physicochemical data. J Chem Inf Model 46: 1891 doi:10.1021/ci0600206

    Article  PubMed  CAS  Google Scholar 

  33. Gharagheizi F, Alamdari RF, Angaji MT (2008) A neural network-group contribution method for estimation of flash point temperature of pure compounds. Energy Fuels 22: 1628–1635 doi:10.1021/ef700753t

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Gharagheizi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gharagheizi, F., Mehrpooya, M. Prediction of some important physical properties of sulfur compounds using quantitative structure–properties relationships. Mol Divers 12, 143–155 (2008). https://doi.org/10.1007/s11030-008-9088-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-008-9088-6

Keywords

Navigation