Skip to main content
Log in

Natural macrocyclic molecules have a possible limited structural diversity

  • Full Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

This paper examines ring size patterns of natural product macrocycles. Evidence is presented that natural macrocycles containing 14-, 16-, and 18-membered rings are of frequent occurrence based on a data mining study. The results raise a question about the limited diversity of macrocycle ring sizes and the nature of the constraints that may cause them. The data suggest that the preference bears no relationship to the odd–even frequency in natural fatty acids. The trends reported here, along with those reported previously (Wessjohann et al. (2005) Mol Divers 9:171), may be generalized to better understand the possible structure preferences of natural macrocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wessjohann LA, Ruijter E, Garcia-Rivera D and Brandt W (2005). What can a chemist learn from nature’s macrocycles—A brief, conceptual view. Mol Divers 9: 171–186

    Article  CAS  Google Scholar 

  2. Databases, such as Chemical Combined Dictionary may be used. The primary literature, such as the Journal of Natural Products also provides a ready source of structural information on natural macrocycles

  3. Pettit GR (1977–1989). Biosynthetic products for cancer chemotherapy. Plenum Press, New York

    Google Scholar 

  4. Pettit GR (1994). Anticancer drugs from animals, plants and microorganisms. Wiley-Interscience, New York

    Google Scholar 

  5. Guggisberg A, Badawi MM, Hesse M and Schmid H (1974). Alkaloids. 151. Structure of the macrocyclic spermidine alkaloids, oncinotine, neooncinotine, and isooncinotine. Helv Chim Acta 57: 414–434

    Article  CAS  Google Scholar 

  6. Scheiper B, Glorius F, Leitner A and Fuerstner A (2004). Catalysis-based enantioselective total synthesis of the macrocyclic spermidine alkaloid isooncinotine. Proc Nat Acad Sci 101: 11960–11965

    Article  CAS  Google Scholar 

  7. Kopp F and Marahiel M (2007). Macrocyclization strategies in polyketide and nonribosomal peptide biosynthesis. Nat Prod Rep 24: 735–749

    Article  CAS  Google Scholar 

  8. Walsh CT (2004). Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303: 1805–1810

    Article  CAS  Google Scholar 

  9. Shen B, Liu W and Nonaka K (2003). Enediyne natural products: biosynthesis and prospect towards engineering novel antitumor agents. Curr Med Chem 10: 2317–2325

    Article  CAS  Google Scholar 

  10. Kricheldorf HR, Richter M and Schwarz G (2002). Macrocycles. 19. Cyclization in the nematic phase? polyesters derived from hydroquinone 4-hydroxybenzoate and aliphatic dicarboxylic acids. Macromolecules 35: 5449–5453

    Article  CAS  Google Scholar 

  11. Fleming FF and Shook BC (2002). Nitrile anion cyclizations. Tetrahedron 58: 1–23

    Article  CAS  Google Scholar 

  12. Curran DP and Liu W (1999). Radical cyclization/fragmentation reactions of dicyano-cyclopropanes to enaminonitriles. A radical alternative to the Thorpe-Ziegler reaction. Synlett 1: 117–119

    Article  Google Scholar 

  13. Sicher J (1962). Stereochemistry of many-membered rings. In: de la Mare PBD, Klyne, W (eds) Progress in stereochemistry, pp 202–235. Butterworths, Washinton

    Google Scholar 

  14. Shaikh AA, Schwarz G and Kricheldorf HR (2003). Macrocycles 23. Odd-even effect in the cyclization of poly(ester imide)s derived from catechols. Polymer 44: 2221–2230

    Article  CAS  Google Scholar 

  15. Spanagel EW and Carothers WH (1935). Polymerization and ring formation. XXV. Macrocyclic esters. J Am Chem Soc 57: 929–934

    Article  CAS  Google Scholar 

  16. Limited information is available for laboratory prepared 11-, 13-, and 15- membered rings: Date J (1976) Multistep conformational interconversion mechanisms. Top Stereochem 9:199–270

    Google Scholar 

  17. Wandel H and Wiest O (2002). Enediynes in 11-membered rings. Synthesis, structure and reactivity of highly strained but unusually stable macrocycles. J Org Chem 67: 388–393

    Article  CAS  Google Scholar 

  18. Eliel EL, Allinger NL, Angyal SJ, Morrison GA (1965) Conformational analysis. Wiley Interscience, New York, pp 213–226

    Google Scholar 

  19. Peterson PE (1972). Heterocycles containing a d-orbital acceptor atom. Consideration of the dependence of structural and reactivity effects on whether the number of ring atoms is odd or even. J Org Chem 37: 4180–4182

    Article  CAS  Google Scholar 

  20. Nemba RM and Ngouhouo F (1994). On the enumeration of chiral and achiral skeletons of position isomers of homosubstituted monocyclic cycloalkanes with a ring size n (odd or even). Tetrahedron 50: 6663–6670

    Article  CAS  Google Scholar 

  21. Johnson CD (1993). Stereoelectronic effects in the formation of 5- and 6-membered rings: the role of Baldwin’s rules. Acc Chem Res 26: 476–482

    Article  CAS  Google Scholar 

  22. Piccirilli JA (1999). Do enzymes obey the Baldwin rules? A mechanistic imperative in enzymic cyclization reactions. Chem Biol 6: 59–64

    Article  Google Scholar 

  23. Deslongchamps P (1983). Organic chemistry series In: Stereoelectronic effects in organic chemistry, vol 1. Pergamon Press, New York

    Google Scholar 

  24. Meng Q and Hesse M (1992). Macrocycles 161. Top Curr Chem 161: 107

    CAS  Google Scholar 

  25. Ercolani G (1998). Physical basis of self-assembly macrocyclizations. J Phys Chem B 102: 5699–5703

    Article  CAS  Google Scholar 

  26. Illuminati G and Mandolini L (1981). Ring closure reactions of bifunctional chain molecules. Acc Chem Res 14: 95–102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Greer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frank, A.T., Farina, N.S., Sawwan, N. et al. Natural macrocyclic molecules have a possible limited structural diversity. Mol Divers 11, 115–118 (2007). https://doi.org/10.1007/s11030-007-9065-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-007-9065-5

Keywords

Navigation