Skip to main content

Advertisement

Log in

Artificial lakes as a climate change adaptation strategy in drylands: evaluating the trade-off on non-target ecosystem services

  • Original Article
  • Published:
Mitigation and Adaptation Strategies for Global Change Aims and scope Submit manuscript

Abstract

Drylands are very susceptible to the effects of climate change due to water stress. One possible climate change adaptation measure is the construction of lakes to increase water availability for drinking and irrigation (food production) and decrease fire risk. These lakes can also increase local biodiversity and human well-being. However, other non-target services such as carbon (C) storage, water purification, and sediment retention might also change. Our main aim was to evaluate the trade-offs on non-targeted ecosystem services due to lakes construction in drylands. This was done using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) modeling tools, comparing a Mediterranean area located in southwest (SW) Europe, with and without artificial lakes. Results showed that the construction of artificial lakes caused an increase of 9.4% in C storage. However, the consequent increase in agricultural area decreased water purification and sediment retention services. This could diminish the life span of the lakes changing the initial beneficial cost-benefit analysis on lakes as adaptation measures to climate change. As a global measure for mitigation and adaptation to climate change strategy, we consider lake construction in drylands to be positive since it can store C in sediments and reduces the vulnerability to water scarcity. However, as a general recommendation and when built to support or increase agriculture in semi-arid landscapes, we consider that lakes should be complemented with additional measures to reduce soil erosion and nutrient leaching such as (i) locate agricultural areas outside the lakes water basin, (ii) afforestation surrounding the lakes, and (iii) adopt the best local agriculture practices to prevent and control soil erosion and nutrient leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almagro M, de Vente J, Boix-Fayos C, Garcia-Franco N, de Aguilar JM, Gonzalez D, Sole-Benet A, Martinez-Mena M (2016) Sustainable land management practices as providers of several ecosystem services under rainfed Mediterranean agroecosystems. Mitig Adapt Strateg Glob Chang 7:1029–1043

    Google Scholar 

  • Alvarez Cobelas M, Rojo C, Angeler DG (2005) Mediterranean limnology: current status, gaps and the future. J Limnol 64:13–29

    Article  Google Scholar 

  • Alves FM, Penha-Lopes G, Vizinho A, Campos I, Ulbig C, Branquinho C; Godinho DP, Santos A (2015) An economic analysis of rural climate change adaptation to droughts: the case of the Tamera Water Retention Landscape, Portugal. BASE – Bottom-Up Climate Adaptation Strategies for Europe, Grant Agreement No. 308337, Internal draft report, July 30, 2015

  • Bangash RF, Passuello A, Sanchez-Canales M, Terrado M, López A, Elorza FJ, Ziv G, Acuña V, Schuhmacher M (2013) Ecosystem services in Mediterranean river basin: climate change impact on water provisioning and erosion control. Sci Total Environ 458–460:246–255

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CA, Frei C, Goyette S et al (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Chang 81:71–95

    Article  Google Scholar 

  • Boardman J, Shepheard ML, Walker E, Foster IDL (2009) Soil erosion and risk-assessment for on- and off-farm impacts: a test case using the Midhurst area, west Sussex, UK. J Environ Manag 90:2578–2588

    Article  Google Scholar 

  • Cañellas I, Sánchez-González M, Bogino SM, Adame P, Herrero C, Roig S, and Bravo F (2008) Silviculture and carbon sequestration in Mediterranean oak forests. In: Managing forest ecosystems: the challenge of climate change. Springer, Netherlands, pp 317–338

  • Caravaca F, Masciandaro G, Ceccanti B (2002) Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment. Soil Tillage Res 68:23–30

    Article  Google Scholar 

  • Castro H, Freitas H (2009) Above-ground biomass and productivity in the Montado: from herbaceous to shrub dominated communities. J Arid Environ 73:506–511

    Article  Google Scholar 

  • Castro J, Fernández-Ondoño E, Rodríguez C, Lallena AM, Sierra M, Aguilar J (2008) Effects of different olive-grove management systems on the organic carbon and nitrogen content of the soil in Jaén (Spain). Soil Tillage Res 98:56–67

    Article  Google Scholar 

  • Chou WW, Silver WL, Jackson RD, Thompson AW, Allen-Diaz B (2008) The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Glob Chang Biol 14:1382–1394

    Article  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  Google Scholar 

  • Coles NA, Farmer D, Cattlin T, Stanton D (2004) Managing water, the key to preserving biodiversity in the dryland agricultural areas of Western Australia. Proc Int Conf Hydrol Sci Pract 21st Century 2:56–63

    Google Scholar 

  • Collins SL, Carpenter SR, Swinton SM, Orenstein DE, Childers DL, Gragson TL, Whitmer AC (2011) An integrated conceptual framework for long-term social-ecological research. Front Ecol Environ 9:351–357

    Article  Google Scholar 

  • Correia TP (1993) Threatened landscape in Alentejo, Portugal: the ‘montado’ and other ‘agro-silvo-pastoral’ systems. Landsc Urban Plan 24:43–48

    Article  Google Scholar 

  • Cruz-Garcia GS, Sachet E, Vanegas MV, Piispanen K (2016) Are the major imperatives of food security missing in ecosystem services research? Ecosyst Serv 19:19–31

    Article  Google Scholar 

  • De Dios VR, Fischer C, Colinas C (2007) Climate change effects on Mediterranean forests and preventive measures. New For 33:29–40

    Article  Google Scholar 

  • De Groot RS, Alkemade R, Braat L, Hein L, Willemen L (2010) Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol Complex 7:260–272

    Article  Google Scholar 

  • De Luis M, Garica-Cano MF, Cortina J, Raventós J, González-Hidalgo JC, Sánchez JR (2001) Climatic trends, disturbances and short-term vegetation dynamics in a Mediterranean shrubland. For Ecol Manag 147:25–37

    Article  Google Scholar 

  • Dean WE, Gorham E (1998) Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26:535–538

    Article  Google Scholar 

  • EEA (2016) Mapping and assessing the condition of Europe’s ecosystems: progress and challenges. European Environment Agency, Luxembourg, p 148

    Google Scholar 

  • Eid EM, Shaltout KH (2013) Evaluation of carbon sequestration potentiality of Lake Burullus, Egypt to mitigate climate change. Egypt J Aquat Res 39:31–38

    Article  Google Scholar 

  • Eid EM, Shaltout KH, Al-Sodany YM, Soetaert K, Jensen K (2010) Modeling growth, carbon allocation and nutrient budgets of Phragmites australis in Lake Burullus, Egypt. Wetlands 30:240–251

    Article  Google Scholar 

  • EMEP, EEA (2013) EEA air pollutant emission inventory guidebook 2013. European Environment Agency, Copenhagen

    Google Scholar 

  • Erol A, Randhir TO (2012) Climatic change impacts on the ecohydrology of Mediterranean watersheds. Clim Chang 114:319–341

    Article  Google Scholar 

  • Evrendilek F, Celik I, Kilic S (2004) Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. J Arid Environ 59:743–752

    Article  Google Scholar 

  • Ferreira DB (2001) Evolução da paisagem de montado no Alentejo interior ao longo do século XX: dinâmica e incidências ambientais. Finisterra 36:179–193

    Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  Google Scholar 

  • Francaviglia R, Coleman K, Whitmore AP, Doro L, Urracci G, Rubino M, Ledda L (2012) Changes in soil organic carbon and climate change—application of the RothC model in agro-silvo-pastoral Mediterranean systems. Agric Syst 112:48–54

    Article  Google Scholar 

  • Francaviglia R, Benedetti A, Doro L, Madrau S, Ledda L (2014) Influence of land use on soil quality and stratification ratios under agro-silvo-pastoral Mediterranean management systems. Agric Ecosyst Environ 183:86–92

    Article  Google Scholar 

  • Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:8

    Article  Google Scholar 

  • Goldstein JH, Caldarone G, Duarte TK, Ennaanay D, Hannahs N, Mendoza G, Daily GC (2012) Integrating ecosystem-service tradeoffs into land-use decisions. Proc Nat Acad Sci 109:565–7570

    Article  Google Scholar 

  • HainesYoung R and Potschin M (2013) Common International Classification of Ecosystem Services (CICES): consultation on version 4, August December 2012. EEA Framework Contract No EEA/IEA/09/003. Download at www.cices.eu

  • Hansson LA, Brönmark C, Anders Nilsson P, Åbjörnsson K (2005) Conflicting demands on wetland ecosystem services: nutrient retention, biodiversity or both? Freshw Biol 50:705–714

    Article  Google Scholar 

  • Harmáckováa ZV, Vacká D (2014) Modelling regulating ecosystem services trade-offs across landscape scenarios in Třeboňsko Wetlands Biosphere Reserve, Czech Republic. Ecol Model 295:207–215

    Article  Google Scholar 

  • Hély, C. and Alleaume, S. (2006). Fire regimes in dryland landscapes. Dryland Ecohydrol 283–301

  • Hisdal H, Stahl K, Tallaksen LM, Demuth S (2001) Have stream flow droughts in Europe become more severe or frequent? Int J Climatol 21:317–333

    Article  Google Scholar 

  • Hoerling M, Eischeid J, Perlwitz J, Quan X, Zhang T, Pegion P (2012) On the increased frequency of Mediterranean drought. J Clim 25:2146–2161

    Article  Google Scholar 

  • Holzer S (2012) Desert or paradise: restoring endangered landscapes using water management, including lake and pond construction. Permanet Publications, East Meon

    Google Scholar 

  • ICNB – Instituto de Conservação da Natureza e Biodiversidade (2008) Plano de ordenamento do Parque Natural do Sudoeste Alentejano e Costa Vicentina estudos de base – Etapa 1 – Descrição. Vol I

  • Iglesias A, Garrote L, Flores F, Moneo M (2007) Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resour Manag 21:775–788

    Article  Google Scholar 

  • Ilarioni L, Nasini L, Brunori A, Proietti P (2013) Experimental measurement of the biomass of Olea europaea L. Afr J Biotechnol 12:1216–1222

    Google Scholar 

  • Intergovernmental Panel on Climate Change (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Intergovernmental Panel on Climate Change

  • IPCC - Intergovernmental Panel on Climate Change (2007) Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In: Pachauri RK and Reisinger A (Eds) IPCC, Geneva

  • IPCC (2013) Annex I: atlas of global and regional climate projections. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J et al (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp 1311–1394

    Google Scholar 

  • IPMA (2016) Portal do Clima, Portal do Clima: Alterações Climáticas em Portugal. Available at: http://www.portaldoclima.pt/pt/. Accessed 26 July 2016

  • Jeppesen E, Kronvang B, Olesen JE, Audet J, Søndergaard M, Hoffmann CC, Andersen HE, Lauridsen TL, Liboriussen L, Larsen SE, Beklioglu M, Meerhoff M, Özen A, Özkan K (2011) Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia 663:1–21

    Article  Google Scholar 

  • Jones HE, Madeira M, Herraez L, Dighton J, Fabiâo A, González-Rio F, Howson G (1999) The effect of organic-matter management on the productivity of Eucalyptus globulus stands in Spain and Portugal: tree growth and harvest residue decomposition in relation to site and treatment. For Ecol Manag 122:73–86

    Article  Google Scholar 

  • Kareiva P, Tallis H, Ricketts TH, Daily GC, Polasky S (eds) (2011) Natural capital: theory and practice of mapping ecosystem services. Oxford University Press, New York

    Google Scholar 

  • Keeler BL, Polasky S, Brauman KA, Johnson KA, Finlay JC, O’Neill A, Dalzell B (2012) Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proc Nat Acad Sci 109:8619–18624

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    Article  Google Scholar 

  • Langdale GW, West LT, Bruce RR, Miller WP, Thomas AW (1992) Restoration of eroded soil with conservation tillage. Soil Technol 5:81–90

    Article  Google Scholar 

  • Leha MDK, Matlocka MD, Cummings EC, Nalley LL (2013) Quantifying and mapping multiple ecosystem services change in West Africa. Agric Ecosyst Environ 165:6–18

    Article  Google Scholar 

  • López-Bermúdez F (1990) Soil erosion by water on the desertification of a semi-arid Mediterranean fluvial basin: the Segura basin, Spain. Agric Ecosyst Environ 33:129–145

    Article  Google Scholar 

  • Madeira M, Azevedo A, Soares P, Tomé M and Araújo MC (2002a) Efeitos da lavoura profunda e da gradagem nas características do solo e na produtividade de plantações de Eucalyptus globulus. Revista de Ciências Agrárias 158–169

  • Madeira M, Fabiao A, Pereira JS, Araújo MC, Ribeiro C (2002b) Changes in carbon stocks in Eucalyptus globulus Labill. plantations induced by different water and nutrient availability. For Ecol Manag 171:75–85

    Article  Google Scholar 

  • Madeira M, Fabião A, Carneiro M (2012) Do harrowing and fertilisation at middle rotation improve tree growth and site quality in Eucalyptus globulus Labill. plantations in Mediterranean conditions? Eur J For Res 131:583–596

    Article  Google Scholar 

  • Mariotti A, Pan Y, Zeng N, Alessandri A (2015) Long-term climate change in the Mediterranean region in the midst of decadal variability. Clim Dyn 44:1437–1456

    Article  Google Scholar 

  • Matias L, Castro J, Zamora R (2011) Soil-nutrient availability under a global-change scenario in a Mediterranean mountain ecosystem. Glob Chang Biol 17:1646–1657

    Article  Google Scholar 

  • Michalský M, Hooda PS (2015) Greenhouse gas emissions of imported and locally produced fruit and vegetable commodities: a quantitative assessment. Environ Sci Pol 48:32–43

    Article  Google Scholar 

  • Montanaro G, Dichio B, Bati CB, Xiloyannis C (2012) Soil management affects carbon dynamics and yield in a Mediterranean peach orchard. Agric Ecosyst Environ 161:46–54

    Article  Google Scholar 

  • Morgan RPC (2005) Soil erosion and conservation, 3rd edn. Blackwell Publishing Limited, USA

    Google Scholar 

  • Nieto OM, Castro J, Fernández E, Smith P (2010) Simulation of soil organic carbon stocks in a Mediterranean olive grove under different soil-management systems using the RothC model. Soil Use Manag 26:118–125

    Article  Google Scholar 

  • Nieto OM, Castro J, Fernández-Ondoño E (2013) Conventional tillage versus cover crops in relation to carbon fixation in Mediterranean olive cultivation. Plant Soil 365:321–335

    Article  Google Scholar 

  • Nin M, Soutullo A, Rodriguez-Gallego L, Di-Minin E (2016) Ecosystem services-based land planning for environmental impact avoidance. Ecosyst Serv 17:172–184

    Article  Google Scholar 

  • Obrador B, Pretus JL (2010) Spatiotemporal dynamics of submerged macrophytes in a Mediterranean coastal lagoon. Estuar Coast Shelf Sci 87:145–155

    Article  Google Scholar 

  • Orlowsky B, Seneviratne SI (2013) Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol Earth Syst Sci 17:1765–1781

    Article  Google Scholar 

  • Panagos P, Meusburger K, Ballabio C, Borrelli P, Alewell C (2014) Soil erodibility in Europe: a high-resolution dataset based on LUCAS. Sci Total Environ 479-480:189–200

    Article  Google Scholar 

  • Panzacchi P, Tonon G, Ceccon C, Scandellari F, Ventura M, Zibordi M, Tagliavini M (2012) Belowground carbon allocation and net primary and ecosystem productivities in apple trees (Malus domestica) as affected by soil water availability. Plant Soil 360:229–241

    Article  Google Scholar 

  • Pimentel D (2006) Soil erosion: a food and environmental threat. Environ Dev Sustain 8:119–137

    Article  Google Scholar 

  • Pinho P, Theobald MR, Dias T, Tang YS, Cruz C, Martins-Loucao MA, Maguas C, Sutton M, Branquinho C (2012) Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for semi-natural Mediterranean evergreen woodlands. Biogeosciences 9:1205–1215

    Article  Google Scholar 

  • Principe A, Nunes A, Pinho P, do Rosario L, Correia O, Branquinho C (2014) Modeling the long-term natural regeneration potential of woodlands in semi-arid regions to guide restoration efforts. Eur J For Res 133:757–767

    Google Scholar 

  • Proietti S, Sdringola P, Desideri U, Zepparelli F, Brunori A, Ilarioni L, Proietti P (2014) Carbon footprint of an olive tree grove. Appl Energy 127:115–124

    Article  Google Scholar 

  • Reid WV, Chen D, Goldfarb L, Hackmann H, Lee YT, Mokhele K, Whyte A (2010) Earth system science for global sustainability: grand challenges. Science 330:916–917

    Article  Google Scholar 

  • Rodrigues PN, Machado T, Pereira LS, Teixeira JL, El Amami H, Zairi A (2003) Feasibility of deficit irrigation with center-pivot to cope with limited water supplies in Alentejo, Portugal. In: Rossi G, Cancelliere A, Pereira LS, Oweis T, Shatanawi M, Zairi A (eds) Tools for drought mitigation in Mediterranean Regions. Kluwer, Dordrecht, pp 203–222

    Chapter  Google Scholar 

  • Rosenzweig C, Tubiello FN (1997) Impacts of global climate change on Mediterranean agrigulture: current methodologies and future directions. Mitig Adapt Strat Glob Chang 1:219–232

    Article  Google Scholar 

  • Ruti PM et al (2015) MED-CORDEX initiative for Mediterranean climate studies. Bull Am Meteorol Soc 97:1187–1208

    Article  Google Scholar 

  • Salinas CX, Mendieta J (2013) The cost of mitigation strategies for agricultural adaptation to global change. Mitig Adapt Strat Glob Chang 18:933–941

    Article  Google Scholar 

  • Saxton KE, Rawls WJ, Romberger JS, Papendick RI (1986) Estimating generalized soil-water characteristics from texture. Soil Sci Soc Am J 50:1031–1036

    Article  Google Scholar 

  • Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Zierl B (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337

    Article  Google Scholar 

  • Schroter M, Remme RP, Sumarga E, Barton DN, Hein L (2015) Lessons learned for spatial modelling of ecosystem services in support of ecosystem accounting. Ecosyst Serv 13:64–69

    Article  Google Scholar 

  • Smith SV et al (2002) Distribution and significance of small, artificial water bodies across the United States landscape. Sci Total Environ 299:21–36

    Article  Google Scholar 

  • Sofo A, Nuzzo V, Palese AM, Xiloyannis C, Celano G, Zukowskyj P, Dichio B (2005) Net CO2 storage in Mediterranean olive and peach orchards. Sci Hortic 107:17–24

    Article  Google Scholar 

  • Spinoni J, Naumann G, Vogt J (2015) Spatial patterns of European droughts under a moderate emission scenario. Adv Sci Res 12:179–186

    Article  Google Scholar 

  • Tallis H, Polasky S (2011) Assessing multiple ecosystem services: an integrated tool for the real world. In: Kareiva P, Tallis H, Ricketts TH, Daily GC, Polasky S (eds) Natural capital: theory and practice of mapping ecosystem services. Oxford University Press, New York

    Google Scholar 

  • Tallis H, Ricketts T, Guerry AD, Wood SA, Sharp R, Nelson E, Ennaanay D, Wolny S, Olwero N, Vigerstol K, Pennington D, Mendoza G, Aukema J, Foster J, Forrest J, Cameron D, Arkema K, Lonsdorf E, Kennedy C, Verutes G, Kim CK, Guannel G, Papenfus M, Toft J, Marsik M, Bernhardt J (2011) InVEST 2.2.0 User’s Guide. The Natural Capital Project, Stanford

    Google Scholar 

  • Tian-Jun Z, Tao H (2013) Projected changes of palmer drought severity index under an RCP8. 5 scenario. Atmos Ocean Sci Lett 6:273–278

    Article  Google Scholar 

  • Tomás PP and Coutinho MA (1993) Estudo do parâmetro de erosividade da Equação Universal de Degradação de Solos. Publicação n° 2/93, CEHIDRO - Instituto Superior Técnico, Lisboa

  • Trabucco A and Zomer RJ (2009) Global Aridity and PET (Potential Evapotranspiration) Database. CGIAR Consortium for Spatial Information

  • Tranvik L J, Downing J A, Cotner J B, Loiselle S A, Striegl R G, Ballatore T J, Dillon P, Finlay K, Fortino K, Knoll L B, Kortelainen P L, Kutser T, Larsen S, Laurion I, Leech D M, McCallister S L, McKnight D M, Melack J M, Overholt E, Porter J A, Prairie Y, Renwick W H, Roland F, Sherman B S, Schindler D W, Sobek S, Tremblay A, Vanni M J, Verschoor A M, von Wachenfeldt E, Weyhenmeyer G A (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54(6part2):2298–2314

  • Velázquez-Martí B, Fernández-González E, Callejón-Ferre ÁJ, Estornell-Cremades J (2012) Mechanized methods for harvesting residual biomass from Mediterranean fruit tree cultivations. Sci Agric 69:180–188

    Article  Google Scholar 

  • Vieira M, Eden P (2005) Desertification and policies in Portugal: land use changes and pressures on local biodiversity. In: Wilson GA, Juntti M (eds) Unravelling desertification: policies and actor networks in Southern Europe. Wageningen Academic Publishers, Wageningen

    Google Scholar 

  • Walter Anthony KM, Zimov SA, Grosse G, Jones MC, Anthony PM, Chapin FS III, Finlay JC, Mack MC, Davydov S, Frenzel P, Frolking S (2014) A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511:452–456

    Article  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1634–1637

    Article  Google Scholar 

  • Williamson CE, Saros JE, Vincent WF, Smold JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282

    Article  Google Scholar 

  • Wischmeier WH and Smith DD (1978) Predicting rainfall erosion losses-a guide to conservation planning, 537. U.S. Department of Agriculture

  • Wisser D et al (2010) The significance of local water resources captured in small reservoirs for crop production—a global-scale analysis. J Hydrol 384:264–275

    Article  Google Scholar 

  • Xu L, Baldocchi DD (2004) Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California. Agric For Meteorol 123:79–96

    Article  Google Scholar 

  • Yang W, Chang J, Xu B, Peng C, Ge Y (2008) Ecosystem service value assessment for constructed wetlands: a case study in Hangzhou, China. Ecol Econ 68:116–125

    Article  Google Scholar 

  • Zalidis G, Stamatiadis S, Takavakoglou V, Eskridge K, Misopolinos N (2002) Impacts of agricultural practices on soil and water quality in the Mediterranean region and proposed assessment methodology. Agric Ecosyst Environ 88:137–146

    Article  Google Scholar 

  • Zedler JB, Kercher S (2005) Wetland resources: status, trends, ecosystem services, and restorability. Annu Rev Environ Resour 30:39–74

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Tamera community, in particular Christoph Ulbig, for the collaboration in this project and for the data shared. This article resulted from a case study research funded in the context of the project BASE (Bottom-up Climate Adaptation Strategies for a Sustainable Europe, grant agreement no. 30833, European Commission Seventh Framework Programme FP7), H2020 TWINN (NitroPortugal, nr 692331), EEA-grants/Programa Adapt (AdaptForChange), and FCT-MEC (SFRH/BPD/75425/2010, PD/PB/113929/2015, PD/BD/113934/2015, IF/00940/2015, UID/BIA/00329/2013 and ChangeTracker—PTDC/AAG-GLO/0045/2014). Funding referred above has not influenced the research reported here; and this study does not reflect the views or opinions of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pinho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

A. Santos and D. Godinho are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, A., P. Godinho, D., Vizinho, A. et al. Artificial lakes as a climate change adaptation strategy in drylands: evaluating the trade-off on non-target ecosystem services. Mitig Adapt Strateg Glob Change 23, 887–906 (2018). https://doi.org/10.1007/s11027-017-9764-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11027-017-9764-x

Keywords

Navigation