Skip to main content
Log in

Identification of the Transient Response of a Capacitive Relative Humidity Sensor

  • Published:
Measurement Techniques Aims and scope

This paper presents the results of identifying the transient response of a relative air humidity sensor. It is shown that the capacitive relative humidity sensor is an integrated microprocessor system that performs joint processing of the readings of the absolute humidity sensor and the temperature sensor. A mathematical model of the relative humidity measurement process is proposed. The transient responses of the absolute humidity sensing element and the temperature sensor are specified under the assumption that they correspond to first-order aperiodic factors. Based on the relationships of thermodynamics, Arden Buck equation, and given transient functions, analytical dependencies are obtained to identify the parameters of the transient response of the capacitive relative humidity sensor. The results of several field experiments are processed and analyzed in accordance with the proposed mathematical model. The effect of anomalous sensor readings is revealed and consists in the fact that with simultaneous stepwise changes in humidity and temperature, the sensor records a change in relative humidity with the opposite sign. It has been established that the cause of the anomalous results of relative humidity measurements is the presence of a large difference between the response time constant of the absolute humidity sensing element and that of the temperature sensor. Measures are proposed to prevent anomalous results of relative humidity measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Y. Feng, A. L. Cabezas, Q. Chen, et al., IEEE Sens. J., 12, No. 9, 2844–2850 (2012), https://doi.org/10.1109/JSEN.2012.2202390.

    Article  ADS  Google Scholar 

  2. Singh S. Ravikant, G. Gupta, S. Yadav, et al., Sens. Actuat. A: Physical, 295, No. 15, 133–140 (2019), https://doi.org/10.1016/j.sna.2019.05.023.

    Article  Google Scholar 

  3. W. H. Zhou, L. C. Wang, and L. B. Wang, IEEE Sens. J., 16, No. 15, 5979–5986 (2016), https://doi.org/10.1109/JSEN.2016.2579644.

    Article  ADS  Google Scholar 

  4. X. Li, X. Chen, X. Yu, et al., IEEE Sens. J., 18, No. 3, 962–966 (2018), https://doi.org/10.1109/JSEN.2017.2777871.

    Article  ADS  Google Scholar 

  5. Y. Feng, L. Xie, Q. Chen, and L. R. Zheng, IEEE Sens. J., 15, No. 6, 3201–3208 (2015), https://doi.org/10.1109/JSEN.2014.2385154.

    Article  ADS  Google Scholar 

  6. X. Yu, X. Chen, X. Ding, and X. Zhao, IEEE T. Instrum. Measur., 67, No. 3, 715–721 (2018), https://doi.org/10.1109/ TIM.2017.2784082.

  7. X. Qiu, R. Tang, J. Zhu, et al., Sens. Actuat. B: Chemical, 147, No. 2, 381–384 (2010), https://doi.org/10.1016/j.snb.2010.04.012.

    Article  Google Scholar 

  8. D. Lu, Y. Zheng, A. Penirschke, and R. Jakoby, IEEE Sens. J., 16, No. 1, 13–14 (2016), https://doi.org/10.1109/JSEN.2015.2468082.

    Article  ADS  Google Scholar 

  9. B. Korenko, M. Rothhardt, A. Hartung, and H. Bartelt, IEEE Sens. J., 15, No. 10, 5450–5454 (2015), https://doi.org/10.1109/JSEN.2015.2444100.

    Article  ADS  Google Scholar 

  10. M. R. K. Soltanian, A. S. Sharbirin, M. M. Ariannejad, et al., IEEE Sens. J., 16, No. 15, 5987–5992 (2016), https://doi.org/10.1109/JSEN.2016.2573961.

    Article  ADS  Google Scholar 

  11. J. J. Steele, G. A. Fitzpatrick, and M. J. Brett, IEEE Sens. J., 7, No. 6, 955–956 (2007).

    Article  ADS  Google Scholar 

  12. Z. Wenhe, H. Xuan, W. Jianyun, et al., J. Micro/Nanolith., MEMS, MOEMS, 16, No. 3, 1–9 (2017), https://doi.org/10.1117/1.JMM.16.3.034503.

  13. H. P. Hong, K. H. Jung, N. K. Min, et al., IEEE Sens.-Taipei, Taiwan, (2012), https://doi.org/10.1109/ICSENS.2012.6411151.

  14. J. Fraden, Modern Sensor: Handbook [Russian translation], Tekhnosfera, Moscow (2005).

  15. T. Islam, C. Pramanik, and H. Saha, Microelectron. Reliab., 45, No. 7, 697–703 (2005).

    Article  Google Scholar 

  16. A. P. Kir’yanov and S. M. Korshchnov, Thermodynamics and Molecular Physics, Prosveshcheniye, Moscow (1977).

  17. A. L. Buck, J. Appl. Meteorol., 20, No. 12, 1527–1532 (1981).

    Article  ADS  Google Scholar 

  18. J. F. Dijksman, Design of Piezo Inkjet Print Heads. From Acoustics to Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2018).

  19. E. V. Kaplya, Izmer. Tekhn., No. 5, 13–18 (2014).

  20. E. A. Alkhimov, A. N. Dovgal, O. B. Ivanova, et al., Izmer. Tekhn., No. 7, 46–48 (2011).

  21. Ch. L. Phillips and R. D. Harbor., Feedback Control System [Russian translation], Lab. Bazov. Znanii, Moscow (2000).

  22. G. Ellis, Control System Design Guide, Elsevier, Waltham (2012), 4th ed.

  23. J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations [Russian translation], Mir, Moscow (1988).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Kaplya.

Additional information

Translated from Metrologiya, No. 4, pp. 51–68, October–December, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaplya, V.I., Kaplya, E.V. & Silaev, A.A. Identification of the Transient Response of a Capacitive Relative Humidity Sensor. Meas Tech 62, 1099–1105 (2020). https://doi.org/10.1007/s11018-020-01740-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-020-01740-0

Keywords

Navigation