Skip to main content

Advertisement

Log in

Creation of an Effective Technology for the Production of Cold-Rolled High-Strength Low-Alloy Steels with High and Stable Properties. Part 1. Hot-rolled Products

  • Published:
Metallurgist Aims and scope

The study on the metallurgical quality of steel, structural state, and mechanical properties of hot-rolled steel was performed on the metal of eight industrial melts. This steel is used for the production of cold-rolled steel of the 340 MPa strength class or grade HC340LA annealed in bell-type furnaces. The results demonstrate the possibility of economical alloying and microalloying of steel and directions for optimizing the smelting, ladle processing, continuous casting, and steel hot rolling technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. E. Kh. Shakhpazov, A. I. Zaitsev, I. G. Rodionova, and G. V. Semernin, “Key directions of development of metallurgical technology to meet the growing requirements for steel quality,” Elektrometallurgiya, No. 2, 2–12 (2011).

    Google Scholar 

  2. C. I. Garcia, M. Hua, K. Cho, and A. J. DeArdo, “On the strength of microalloyed steels. An interpretive review,” La Metallurgia Italiana, No. 11-12, 35–42 (2009).

  3. A. J. DeArdo, Microalloyed Steels: Past, Present and Future, in book HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015, Conf. Proc. 17–32; DOI: https://doi.org/10.1002/9781119223399.ch2.

  4. F. Liu, J. Wang, Y. Liu, R. D. K. Misra, and C. Liu, “Effects of Nb and V on microstructural evolution precipitation behavior and tensile properties in hot-rolled Mo-bearing Steel,” J. Iron Steel Res. Int., 23, No. 6, 559–565 (2016).

    Article  Google Scholar 

  5. H. Mohrbacher, “Reverse metallurgical engineering towards sustainable manufacturing of vehicles using Nb and Mo alloyed high performance steels,” Adv. Manuf., 1, 28–41 (2013).

    Article  Google Scholar 

  6. C. Ledermueller, H. Li, and S. Priming, “Engineering hierarchical microstructures via advanced thermo-mechanical processing of a modern HSLA steel,” Metall. Mater. Trans. A, 49, No. 12, 6337–6350 (2018).

    Article  CAS  Google Scholar 

  7. F. Z. Bu, X. M. Wang, S. W. Yang, C. J. Shang, and R. D. K. Misra, “Contribution of interphase precipitation on yield strength in thermomechanically simulated Ti–Nb and Ti–Nb–Mo microalloyed steels,” Mater. Sci. Eng. A, 620, 22–29 (2014).

    Article  CAS  Google Scholar 

  8. A. J. DeArdo, “Niobium in modern steels,” Int. Mater. Rev, 48, No. 6, 371–402 (2003).

    Article  CAS  Google Scholar 

  9. J. J. Jonas and I. Weiss, “Effect of precipitation on recrystallization in microalloyed steels,” Metal Sci., 13, No. 3-4, 238–245 (2013).

    Article  Google Scholar 

  10. A. J. DeArdo, M. Hua, and C. I. Garcia, Basic Metallurgy of Modern Niobium Steels: Int. Symp. of Niobium Microalloyed Sheet Steel for Automotive Applications, ed. by S. Hashimoto, S. Jansto, H. Mohrbacher, and F. Sicilioano, TMS, 499–549 (2006).

  11. Y. Shao, C. Liu, Z. Yan, H. Li, and Y. Liu, “Formation mechanism and control methods of acicular ferrite in HSLA steels: A rev.,” J. Mater. Sci. Technol., 34, 737–744 (2018).

    Article  Google Scholar 

  12. L. Sanz, B. Pereda, and B. Lopez, “Effect of thermomechanical treatment and coiling temperature on the strengthening mechanisms of low carbon steels microalloyed with Nb,” Mater. Sci. Eng. A, 685, 377–390 (2017).

    Article  CAS  Google Scholar 

  13. I. G. Rodionova, A. I. Zaitsev, N. G. Shaposhnikov, I. N. Chirkina, A. M. Pokrovsky, A. A. Nemtinov, P. A. Mishnev, and V. V. Kuznetsov, “Influence of the chemical composition and production parameters on the formation of a nanostructured component and a complex of properties of high-strength low-alloy structural steels,” Metallurg, No. 6, 33–39 (2010).

    Google Scholar 

  14. Z. Liu, R. O. Olivares, Y. Lei, C. I. Garcia, and G. Wang, “Microstructural characterization and recrystallization kinetics modeling of annealing cold-rolled vanadium microalloyed HSLA steels,” J. Alloys Compd., 679, 293–301 (2016).

    Article  CAS  Google Scholar 

  15. I. Kapoor, Y. Lan, A. Rijkenberg, G. West, Z. Li, and V. Janik, “Correlative analysis of interaction between recrystallization and precipitation during sub-critical annealing of cold-rolled low-carbon V and Ti–V bearing microalloyed steels,” Mater. Sci. Eng. A, 785 (2020), 139381; DOI https://doi.org/10.1016/j.msea.2020.139381.

  16. E. Kh. Shakhpazov, A. I. Zaitsev, A. A. Nemtinov, S. D. Zinchenko, I. G. Rodionova, and S. V. Efimov, “Modern trends in the development of ladle metallurgy and the problem of non-metallic inclusions in steel,” Metally, No. 1, 3–13 (2007).

    Google Scholar 

  17. A. I. Zaitsev, A. V. Koldaev, N. A. Arutyunyan, N. G. Shaposhnikov, and S. F. Dunaev, “Complex nonmetallic inclusions formed in billets heated for rolling and characteristics of structural steels,” Met. Sci. Heat Treat., 58, No. 11, 697–703 (2017).

    Article  CAS  Google Scholar 

  18. A. I. Zaitsev, V. S. Kraposhin, I. G. Rodionova, G. V. Semernin, and A. S. Talis, Complex Non-Metallic Inclusions and Properties of Steel [in Russian], Metallurgizdat, Moscow (2015).

    Google Scholar 

  19. I. N. Chirkina, Improvement of Properties of Cold-Rolled High-Strength Low-Alloy Steels by Controlling Structure Formation During Recrystallization Annealing in Bell-Type Furnaces: Thesis Research of PhD in Technical Sciences, TsNIIchermet im. I. P. Bardina, Moscow (2014).

    Google Scholar 

  20. A. I. Zaitsev, “Prospective directions for development of metallurgy and materials science of steel,” Pure Appl. Chem., 89, No. 10, 1553–1565 (2017).

    Article  CAS  Google Scholar 

  21. A. I. Zaitsev, A. V. Koldaev, N. A. Karamysheva, and I. G. Rodionova, “Mechanisms for improving the chemical and structural homogeneity of hot-rolled products for products obtained by hot stamping,” Metallurg, No. 11, 83–92 (2015).

    Google Scholar 

  22. A. I. Zaitsev, I. G. Rodionova, A. V. Koldaev, N. A. Arutyunyan, and S. F. Dunaev, “Investigation of the conditions for improving the chemical and structural homogeneity of hot-rolled ferritic steels,” Metallurg, No. 10, 19–27 (2020).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Zaytsev.

Additional information

Translated from Metallurg, Vol. 66, No. 3, pp. 13–21, March, 2022. Russian DOI: https://doi.org/10.52351/00260827_2022_03_13.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaytsev, A.I., Dagman, A.I., Stepanov, A.B. et al. Creation of an Effective Technology for the Production of Cold-Rolled High-Strength Low-Alloy Steels with High and Stable Properties. Part 1. Hot-rolled Products. Metallurgist 66, 243–254 (2022). https://doi.org/10.1007/s11015-022-01323-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-022-01323-0

Keywords

Navigation