Skip to main content

Advertisement

Log in

Synthesizing a System for Remote Energy Monitoring in Manufacturing

  • Published:
Metallurgist Aims and scope

The main problems encountered in the remote monitoring of energy use in metals production and other industries are identified. Such monitoring entails long-term observation of energy parameters along with production data, in addition to vectorial representation of the criteria chosen to assess energy use. A new approach is proposed to the synthesis of a web-oriented system based on theoretical-multivariate, parametric, and structural modeling of remote energy monitoring. The structure of the system is detailed by employing a modular multipurpose hardware-software complex that includes open interfaces, the original source code, and licenses for free dissemination of the software. Results are presented from the practical use of specialized elements of the remote energy monitoring system and the synthesized structure in accordance with the above-described approach. Also, a method is proposed for evaluating the effectiveness of the monitoring systems that are created.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V. V. Novikov, "Intelligent measurements for energy-conservation Sservices," Energoekspert, No. 3, 68–70 (2011).

  2. K. Teodoro, "From establishing the protocol for a pipeline network to making it energy-efficient," Cher. Metally, No. 4 (988), 102–104 (2014).

  3. E. A. Kalashnikov and L. N. Lyadova, "METAS Control system for monitoring sources of energy consumption," Proc. Conf. Microsoft Technologies in the Theory and Practice of Programming, Izd. Nizhegor. Gos. Univ., N. Novgorod (2010), pp. 183–185.

  4. A. M. Kostygov and A. V. Kychkin, "Structuring the remote monitoring of a group of intelligent mobile platforms in real time," Datch. Sistemy, No. 9 (172), 65–69 (2013).

  5. T. E. Troitskii-Markov and D. V. Sennovskii, "Principles of the design of a system for monitoring energy efficiency," Monit. Nauka Bezopas., 4, 34–39 (2011).

    Google Scholar 

  6. A. F. Mets (ed.), Organizing and Planning Factories in the Ferrous Metallurgy Industry: Textbook, Metallurgiya, Moscow (1986).

    Google Scholar 

  7. A. V. Kychkin, "Model for synthesizing the structure of an automated data acquisition and processing system based on wireless sensors," Avtom. Sovr. Tekhnol., No. 1 15–20 (2009).

  8. N. I. Khoroshev, D. K. Eltyshev, and A. V. Kychkin, "Integral estimate of the efficiency of energy-monitoring systems," Fund. Issled., No. 4–5, 716–720 (2014).

  9. A. V. Kychkin, "Long-term energy monitoring on the basis of the software platform OpenJEVis," Vestn. Perm. Nat. Issled. Politekhn. Univ. Elektrotekhn., Inform. Tekhnol., Sist. Upravl., No. 1 (9), 5–15 (2014).

  10. A. V. Kychkin, K. G. Musikhina, and M. G. Razepina, "Study of the effectiveness of developing and introducing an energy management system at an industrial company," ibid., 66–79.

Download references

This study was performed to help fulfill the Grant No. MK-5279.2014.8 (Synthesis of Efficient Technologies for the Remote Monitoring and Control of the State of an Intelligent Electric-Power System with an Actively Adaptive Network) from the President of the Russian Federation in support of young Russian scientists and candidates of science,.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kychkin.

Additional information

Translated from Metallurg, No. 9, pp. 20–27, September, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kychkin, A.V. Synthesizing a System for Remote Energy Monitoring in Manufacturing. Metallurgist 59, 752–760 (2016). https://doi.org/10.1007/s11015-016-0170-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-016-0170-5

Keywords

Navigation