Skip to main content
Log in

Dynamic behavior analysis of planetary gear transmission system with bolt constraint of the flexible ring gear

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In order to investigate the influence of the bolt constraint parameters on the dynamic characteristic of the planetary gear transmission(PGT) system with fuselage excitation, a dynamic model of the PGT system with flexible ring gear is established with the consideration of time-varying meshing stiffness with meshing phase, manufacturing error, installation error, fuselage excitation and bolt constraint. The Newmark-beta method is used to solve the dynamic model, then the dynamic load coefficient and load sharing coefficient is obtained. The results indicate that the parameters of the bolt have effects on the dynamic performance of the PGT system. Reducing the bolt number can can help to improve the dynamic load performance and load sharing performance of the system when bolt stiffness is small. Moreover, reducing bolt stiffness can also improve the dynamic load performance and load sharing performance of the system effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kahraman A (1994) Planetary gear train dynamics. J Mech Des 10(1115/1):2919441

    Google Scholar 

  2. Guan X, Tang J, Hu Z et al (2022) Dynamic analysis of spur gear pair established by flexible ring and time-varying mesh model. J Braz Soc Mech Sci Eng 44(4):1–21

    Article  Google Scholar 

  3. Guan X, Tang J, Hu Z et al (2022) A new dynamic model of light-weight spur gear transmission system considering the elasticity of the shaft and gear body. Mech Mach Theory 170:104689

    Article  Google Scholar 

  4. Ericson TM, Parker RG (2021) Experimental measurement and finite element simulation of elastic-body vibration in planetary gears. Mech Mach Theory 160:104264

    Article  Google Scholar 

  5. Hu S, Fang Z (2019) The analysis and modeling of the synthetical meshing stiffness of inner gearing considering the flexible inner ring gear. Shock Vib. https://doi.org/10.1155/2019/2324546

    Article  Google Scholar 

  6. Liu J, Pang R, Ding S et al (2020) Vibration analysis of a planetary gear with the flexible ring and planet bearing fault. Measurement 165:108100

    Article  Google Scholar 

  7. Hu Y, Talbot D, Kahraman A (2019) A gear load distribution model for a planetary gear set with a flexible ring gear having external splines. J Mech Des 141(5):053301

    Article  Google Scholar 

  8. Hu Y, Talbot D, Kahraman A (2019) A load distribution model for double-planet planetary gear sets[c]//international design engineering technical conferences and computers and information in engineering conference. Am Soc Mech Eng. 59308: V010T11A014

  9. Hu S, Fang Z, Xu Y et al (2021) Characteristics analysis of the new flexible ring gear for helicopter reducer. Proc Inst Mech Eng Part K: J Multi-body Dyn 235(3):353–374

    Google Scholar 

  10. Xu HC, Qin DT (2018) Vibration response of flexible spur ring gear with elastic foundation under internal excitation. J Mech Eng 54:161

    Article  Google Scholar 

  11. Cao Z, Rao M (2021) Coupling effects of manufacturing error and flexible ring gear rim on dynamic features of planetary gear. Proc Inst Mech Eng C J Mech Eng Sci 235(21):5234–5246

    Article  Google Scholar 

  12. Fan Z, Zhu C, Song C (2020) Dynamic analysis of planetary gear transmission system considering the flexibility of internal ring gear. Iran J Sci Technol Trans Mech Eng 44(3):695–706

    Article  Google Scholar 

  13. Zhang W, An L (2021) Dynamic analysis on single-rotor multi-input helicopter main gearbox related with structural parameters. J Low Freq Noise, Vib Act Control 40(1):181–194

    Article  Google Scholar 

  14. Xu X, Luo T, Luo J et al (2018) Dynamical load sharing behaviors of heavy load planetary gear system with multi-floating components. Int J Model Simul Sci Comput 9(01):1850005

    Article  Google Scholar 

  15. Mo S, Zhang T, Jin G et al (2018) Dynamic characteristics and load sharing of herringbone wind power gearbox. Math Probl Eng. https://doi.org/10.1155/2018/7251645

    Article  MathSciNet  MATH  Google Scholar 

  16. Mo S, Zhang T, Jin G et al (2019) Influence mechanism of multi-coupling error on the load sharing characteristics of herringbone gear planetary transmission system. Proc Inst Mech Eng Part K: J Multi-body Dyn 233(4):792–816

    Google Scholar 

  17. Wang J, Yang S, Liu Y et al (2019) Analysis of load-sharing behavior of the multistage planetary gear train used in wind generators: effects of random wind load. Appl Sci 9(24):5501

    Article  Google Scholar 

  18. Shuai M, Ting Z, Guo-Guang J et al (2020) Analytical investigation on load sharing characteristics of herringbone planetary gear train with flexible support and floating sun gear. Mech Mach Theory 144:103670

    Article  Google Scholar 

  19. Yoo HG, Chung WJ, Kim BS et al (2022) Application of flexible pin for planetary gear set of wind turbine gearbox. Sci Rep 12(1):1–13

    Article  Google Scholar 

  20. Pedrero JI, Pleguezuelos M, Sánchez MB (2022) Influence of meshing stiffness on load distribution between planets of planetary gear drives. Mech Mach Theory 170:104718

    Article  Google Scholar 

  21. Kim JG, Park YJ, Lee SD et al (2018) Influence of the carrier pinhole position errors on the load sharing of a planetary gear train. Int J Precis Eng Manuf 19(4):537–543

    Article  Google Scholar 

  22. Wang C, Wei J, Wu Z et al (2019) Load sharing performance of herringbone planetary gear system with flexible pin. Int J Precis Eng Manuf 20(12):2155–2169

    Article  Google Scholar 

  23. Hu S, Fang Z, Xu Y et al (2021) Meshing impact analysis of planetary transmission system considering the influence of multiple errors and its effect on the load sharing and dynamic load factor characteristics of the system. Proc Inst Mech Eng, Part K: J Multi-body Dyn 235(1):57–74

    Google Scholar 

  24. He J, Chen H, Leng J, et al (2021) Research on load sharing characteristics of planetary gear system with flexible shaft structure in shearer cutting unit[C]//2020. In: 15th symposium on piezoelectrcity, acoustic waves and device applications (SPAWDA). IEEE. 588–592

  25. Ge H, Shen Y, Zhu Y et al (2021) Simulation and experimental test of load-sharing behavior of planetary gear train with flexible ring gear. J Mech Sci Technol 35(11):4875–4888

    Article  Google Scholar 

  26. Kim JG, Lee GH, Park YJ et al (2011) Study of load distribution and sharing characteristics of planetary gear train for wind turbines[c]//applied mechanics and materials. Trans Tech Publ Ltd 86:674–679

    Google Scholar 

  27. Luo Y, Cui L, Ma J (2021) Effect of bolt constraint of ring gear on the vibration response of the planetary gearbox. Mech Mach Theory 159:104260

    Article  Google Scholar 

  28. Xu H, Qin D (2020) Vibration characteristics of flexible spur ring gears using different connection types. J Low Freq Noise, Vib Act Control 39(2):246–257

    Article  Google Scholar 

  29. Taheri Kahnamouei J, Yang J (2022) Random vibration analysis of thin-walled elastic rings under multiple moving loads. Proc Inst Mech Eng C J Mech Eng Sci 236(1):88–99

    Article  Google Scholar 

  30. Parker RG, Lin J (2004) Mesh phasing relationships in planetary and epicyclic gears. J Mech Des 126(2):365–370

    Article  Google Scholar 

  31. Parker RG (2000) A physical explanation for the effectiveness of planet phasing to suppress planetary gear vibration. J Sound Vib 236(4):561–573

    Article  Google Scholar 

  32. Zhang D, Zhu R, Li M et al (2021) Meshing stiffness parametric vibration of coaxial contrarotating encased differential gear train. Math Probl Eng. https://doi.org/10.1155/2021/8950945

    Article  Google Scholar 

  33. Qin Datong, Xie Liyang (2011) Mechanical transmission design[M]. Chemical Industry Press

  34. Sopanen J, Mikkola A (2003) Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 1: theory. Proc Inst Mech Eng, Part K: J Multi-body Dyn 217(3):201–211

    Google Scholar 

  35. Guan P, DeSmidt HA (2016) Passive suppression of planetary gear transmission vibration via discrete boundary struts[C]//AHS International 72nd Forum

  36. Zhu ZB, Jiang Z, Yin M (2016) Impact of support stiffness on dynamic load sharing characteristics of planetary train system. J Aerosp Power 31:986–992

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 52275061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupeng Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Strain energy

$$ U_{m} = \sum\limits_{i = 1}^{{N_{p} }} {(\frac{1}{2}k_{sp} d_{spi}^{2} + \frac{1}{2}k_{rp} d_{rpi}^{2} )} $$
$$ U_{b} = \frac{1}{2}[k_{bs} (x_{s}^{2} + y_{s}^{2} ) + k_{bc} (x_{c}^{2} + y_{c}^{2} )] + \sum\limits_{i = 1}^{Np} {\frac{1}{2}k_{bp} [(x_{pi} - x_{bc} )^{2} + (y_{pi} - y_{bc} )^{2} ]} $$

1.2 Kinetic energy

$$ T_{s} = \frac{1}{2}m_{s} (\dot{x}_{s}^{2} + \dot{y}_{s}^{2} ) + \frac{1}{2}J_{s} \dot{\phi }_{s}^{2} $$
$$ T_{c} = \frac{1}{2}m_{c} (\dot{x}_{c}^{2} + \dot{y}_{c}^{2} ) + \frac{1}{2}J_{c} \dot{\phi }_{c}^{2} $$
$$ T_{p} = \sum\limits_{i = 1}^{Np} {[\frac{1}{2}m_{p} (\dot{x}_{pi}^{2} + \dot{y}_{pi}^{2} ) + \frac{1}{2}J_{p} \dot{\phi }_{pi}^{2} ]} $$

1.3 Dissipation energy

$$ D_{m} = \sum\limits_{i = 1}^{{N_{p} }} {(\frac{1}{2}c_{sp} \dot{d}_{spi}^{2} + \frac{1}{2}c_{rp} \dot{d}_{rpi}^{2} )} $$
$$ U_{b} = \frac{1}{2}[c_{bs} (\dot{x}_{s}^{2} + \dot{y}_{s}^{2} ) + c_{bc} (\dot{x}_{c}^{2} + \dot{y}_{c}^{2} )] + \sum\limits_{i = 1}^{Np} {\frac{1}{2}c_{bp} [(\dot{x}_{pi} - \dot{x}_{bc} )^{2} + (\dot{y}_{pi} - \dot{y}_{bc} )^{2} ]} $$

1.4 Total mass matrix

$$ M = M_{r} + M_{PGT} $$

1.5 Ring gear mass matrix

$$ M_{r} = T_{r}^{T} \cdot m_{r} \int_{0}^{2\pi } {\left[ {\gamma (\theta )^{T} \gamma (\theta ) + \psi (\theta )^{T} \psi (\theta )} \right]d\theta } \cdot T_{r} $$
$$ T_{r} = \left[ {\begin{array}{*{20}c} {I_{{N_{r} \times N_{r} }} } & {Z_{{N_{r} \times 3(N_{s} + N_{c} + N_{p} )}} } \\ \end{array} } \right] $$

1.6 PGT system mass matrix

$$ M_{PGT} = T_{PGT}^{T} \cdot diag\left( {M_{s} ,M_{c} ,M_{p} ,M_{p} ,M_{p} } \right) \cdot T_{PGT} $$
$$ M_{j} = \left[ {\begin{array}{*{20}c} {m_{j} } & 0 & 0 \\ 0 & {m_{j} } & 0 \\ 0 & 0 & {J_{j} } \\ \end{array} } \right],j = s,c,p $$
$$ T_{PGT} = \left[ {\begin{array}{*{20}c} {Z_{{N_{r} \times N_{r} }} } & {Z_{{N_{r} \times 3(N_{s} + N_{c} + N_{p} )}} } \\ {sym} & {I_{{3(N_{s} + N_{c} + N_{p} ) \times 3(N_{s} + N_{c} + N_{p} )}} } \\ \end{array} } \right] $$

1.7 Total stiffness matrix

$$ K(t) = K_{r} + K_{PGT} (t) + K(\omega_{c}^{2} ) $$

1.8 Ring gear stiffness matrix

$$ K_{r} = T_{r}^{T} \cdot k_{bend} \int_{0}^{2\pi } {\left[ {(\gamma^{^{\prime}} (\theta ) - \psi^{^{\prime\prime}} (\theta ))^{T} (\gamma^{^{\prime}} (\theta ) - \psi^{^{\prime\prime}} (\theta ))} \right]} d\theta \cdot T_{r} $$

1.9 PGT system stiffness matrix

$$ K_{PGT} (t) = K_{sp} (t) + K_{rp} (t) + K_{bolt} + K_{bs} + K_{bc} + K_{pc} $$

1.10 External meshing stiffness matrix

$$ K_{sp} (t) = \sum\limits_{i = 1}^{3} {K_{sp}^{i} (t)} $$
$$ K_{sp}^{i} (t) = (T_{sp3} T_{sp2} T_{sp1} )^{T} \cdot k_{sp} (t) \cdot (T_{sp3} T_{sp2} T_{sp1} ) $$
$$ T_{sp3} = \left[ {\begin{array}{*{20}c} {cos\alpha_{s} } & {sin\alpha_{s} } & {r_{bs} } & { - cos\alpha_{s} } & { - sin\alpha_{s} } & { - r_{bp} } \\ \end{array} } \right] $$
$$ T_{sp2} = \left[ {\begin{array}{*{20}c} {cos(\omega_{c} t + \varphi_{i} )} & { - sin(\omega_{c} t + \varphi_{i} )} & 0 \\ {sin(\omega_{c} t + \varphi_{i} )} & {cos(\omega_{c} t + \varphi_{i} )} & \vdots \\ 0 & \cdots & {Z_{4 \times 4} } \\ \end{array} } \right] $$
$$ T_{sp1} = \left[ {\begin{array}{*{20}c} {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{N_{r} }}} & {I_{3 \times 3} } & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times (N_{c} + N_{p} )}}} \\ {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{3 \times (N_{r} + N_{s} + N_{p} + i - 1)}}} & {I_{3 \times 3} } & {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{3 \times (N_{p} - i)}}} \\ \end{array} } \right] $$
$$ K_{rp} (t) = \sum\limits_{i = 1}^{3} {K_{rp}^{i} (t)} $$

1.11 Internal meshing stiffness matrix

$$ K_{rp}^{i} (t) = (T_{rp3} T_{rp2} T_{rp1} )^{T} \cdot k_{rp} (t) \cdot (T_{rp3} T_{rp2} T_{rp1} ) $$
$$ T_{rp3} = \left[ {\begin{array}{*{20}c} { - cos\alpha_{r} } & { - sin\alpha_{r} } & { - cos\alpha_{r} } & {sin\alpha_{r} } & {r_{bp} } \\ \end{array} } \right] $$
$$ T_{rp2} = \left[ {\begin{array}{*{20}c} {\gamma (\theta )} & 0 \\ {\psi (\theta )} & \vdots \\ 0 & {I_{3 \times 3} } \\ \end{array} } \right] $$
$$ T_{rp1} = \left[ {\begin{array}{*{20}c} {I_{{N_{r} \times N_{r} }} } & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times (N_{s} + N_{c} )}}} & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times N_{p} }}} \\ {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{N_{r} + 3 \times (N_{s} + N_{c} + i - 1)}}} & {I_{3 \times 3} } & {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{3 \times (N_{p} - i)}}} \\ \end{array} } \right] $$

1.12 Bolt stiffness matrix

$$ K_{bolt} = \sum\limits_{i = 1}^{{N_{sp} }} {K_{bolt}^{i} } $$
$$ K_{bolt}^{i} = T_{bolt}^{^{\prime}} \cdot k_{bolt} [\gamma (\theta_{i} )^{T} \gamma (\theta_{i} ) + \psi (\theta_{i} )^{T} \psi (\theta_{i} )] \cdot T_{bolt} $$
$$ T_{bolt} = \left[ {\begin{array}{*{20}c} {I_{{N_{r} \times N_{r} }} } & {Z_{{N_{r} \times 3(N_{s} + N_{c} + N_{p} )}} } \\ \end{array} } \right] $$

1.13 Sun gear support stiffness matrix

$$ K_{bs} = T_{bs}^{T} \cdot k_{bs} \cdot T_{bs} $$
$$ T_{bs} = \left[ {\begin{array}{*{20}c} {Z_{{2 \times N_{r} }} } & {I_{2 \times 2} } & {Z_{{2 \times (1 + 3(N_{c} + N_{p} ))}} } \\ \end{array} } \right] $$

1.14 Carrier support stiffness matrix

$$ K_{bc} = T_{bc}^{T} \cdot k_{bc} \cdot T_{bc} $$
$$ T_{bc} = \left[ {\begin{array}{*{20}c} {Z_{{2 \times 3(N_{r} + N_{s)} }} } & {I_{2 \times 2} } & {Z_{{2 \times (1 + 3N_{p} )}} } \\ \end{array} } \right] $$

1.15 Planet gear support stiffness matrix

$$ K_{bp} = K_{bpx} + K_{bpy} $$
$$ K_{bpx} = (T_{bpx1} T_{bpx2} T_{bpx3} )^{T} k_{bp} (T_{bpx1} T_{bpx2} T_{bpx3} ) $$
$$ T_{bpx1} = \left[ {\begin{array}{*{20}c} 1 & {r_{c} } & { - 1} \\ \end{array} } \right] $$
$$ T_{bpx2} = \left[ {\begin{array}{*{20}c} {cos(\omega_{c} t + \varphi_{i} )} & { - sin(\omega_{c} t + \varphi_{i} )} & 0 \\ 0 & 0 & {I_{2 \times 2} } \\ \end{array} } \right] $$
$$ T_{bpx3} = \left[ {\begin{array}{*{20}c} {I_{3 \times 3} } & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times (N_{s} + N_{c} )}}} & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times N_{p} }}} \\ {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{N_{r} + 3 \times (N_{s} + N_{c} + i - 1)}}} & 1 & {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{2 + 3 \times (N_{p} - i)}}} \\ \end{array} } \right] $$
$$ K_{bpy} = (T_{bpy1} T_{bpy2} T_{bpy3} )^{T} k_{bp} (T_{bpy1} T_{bpy2} T_{bpy3} ) $$
$$ T_{bpy1} = \left[ {\begin{array}{*{20}c} 1 & { - 1} \\ \end{array} } \right] $$
$$ T_{bpy2} = \left[ {\begin{array}{*{20}c} {sin(\omega_{c} t + \varphi_{i} )} & {cos(\omega_{c} t + \varphi_{i} )} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} } \right] $$
$$ T_{bpy3} = \left[ {\begin{array}{*{20}c} {I_{3 \times 3} } & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times (N_{s} + N_{c} )}}} & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times N_{p} }}} \\ {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{N_{r} + 3 \times (N_{s} + N_{c} + i - 1) + 1}}} & 1 & {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{2 + 3 \times (N_{p} - i) - 1}}} \\ \end{array} } \right] $$

1.16 Gyroscopic stiffness matrix

$$ K(\omega_{c}^{2} ) = K_{s} (\omega_{c}^{2} ) + K_{c} (\omega_{c}^{2} ) $$
$$ K_{s} (\omega_{c}^{2} ) = T_{s}^{T} \cdot m_{s} \omega_{c}^{2} \left[ {\begin{array}{*{20}c} { - 1} & 0 \\ 0 & { - 1} \\ \end{array} } \right] \cdot T_{s} $$
$$ T_{s} = \left[ {\begin{array}{*{20}c} {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{N_{r} }}} & {I_{2 \times 2} } & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{1 + 3 \times (N_{c} + N_{p} )}}} \\ \end{array} } \right] $$
$$ K_{c} (\omega_{c}^{2} ) = T_{c}^{T} \cdot m_{c} \omega_{c}^{2} \left[ {\begin{array}{*{20}c} { - 1} & 0 \\ 0 & { - 1} \\ \end{array} } \right] \cdot T_{c} $$
$$ T_{s} = \left[ {\begin{array}{*{20}c} {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{N_{r} + 3}}} & {I_{2 \times 2} } & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{1 + 3 \times N_{p} }}} \\ \end{array} } \right] $$

1.17 Total damping matrix

$$ C(t) = C_{r} + C_{PGT} (t) + C(\omega_{c}^{2} ) $$

Ring Gear Damping Matrix\(C_{r} = \delta_{r} \cdot K_{r}\).

1.18 PGT system damping matrix

$$ C_{PGT} (t) = C_{sp} (t) + C_{rp} (t) + C_{bolt} + C_{bs} + C_{bc} + C_{pc} $$

1.19 External meshing damping matrix

$$ C_{sp} (t) = \sum\limits_{i = 1}^{3} {C_{sp}^{i} (t)} $$
$$ C_{sp}^{i} (t) = (T_{sp3} T_{sp2} T_{sp1} )^{T} \cdot c_{sp} \cdot (T_{sp3} T_{sp2} T_{sp1} ) $$
$$ T_{sp3} = \left[ {\begin{array}{*{20}c} {cos\alpha_{s} } & {sin\alpha_{s} } & {r_{bs} } & { - cos\alpha_{s} } & { - sin\alpha_{s} } & { - r_{bp} } \\ \end{array} } \right] $$
$$ T_{sp2} = \left[ {\begin{array}{*{20}c} {cos(\omega_{c} t + \varphi_{i} )} & { - sin(\omega_{c} t + \varphi_{i} )} & 0 \\ {sin(\omega_{c} t + \varphi_{i} )} & {cos(\omega_{c} t + \varphi_{i} )} & \vdots \\ 0 & \cdots & {Z_{4 \times 4} } \\ \end{array} } \right] $$
$$ T_{sp1} = \left[ {\begin{array}{*{20}c} {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{N_{r} }}} & {I_{3 \times 3} } & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times (N_{c} + N_{p} )}}} \\ {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{3 \times (N_{r} + N_{s} + N_{p} + i - 1)}}} & {I_{3 \times 3} } & {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{3 \times (N_{p} - i)}}} \\ \end{array} } \right] $$

1.20 Internal meshing damping matrix

$$ C_{rp} (t) = \sum\limits_{i = 1}^{3} {C_{rp}^{i} (t)} $$
$$ C_{rp}^{i} (t) = (T_{rp3} T_{rp2} T_{rp1} )^{T} \cdot c_{rp} \cdot (T_{rp3} T_{rp2} T_{rp1} ) $$
$$ T_{rp3} = \left[ {\begin{array}{*{20}c} { - cos\alpha_{r} } & { - sin\alpha_{r} } & { - cos\alpha_{r} } & {sin\alpha_{r} } & {r_{bp} } \\ \end{array} } \right] $$
$$ T_{rp2} = \left[ {\begin{array}{*{20}c} {\gamma (\theta )} & 0 \\ {\psi (\theta )} & \vdots \\ 0 & {I_{3 \times 3} } \\ \end{array} } \right] $$
$$ T_{rp1} = \left[ {\begin{array}{*{20}c} {I_{{N_{r} \times N_{r} }} } & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times (N_{s} + N_{c} )}}} & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times N_{p} }}} \\ {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{N_{r} + 3 \times (N_{s} + N_{c} + i - 1)}}} & {I_{3 \times 3} } & {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{3 \times (N_{p} - i)}}} \\ \end{array} } \right] $$

1.21 Bolt damping matrix

$$ C_{bolt} = \sum\limits_{i = 1}^{{N_{sp} }} {C_{bolt}^{i} } $$
$$ C_{bolt}^{i} = T_{bolt}^{^{\prime}} \cdot c_{bolt} [\gamma (\theta_{i} )^{T} \gamma (\theta_{i} ) + \psi (\theta_{i} )^{T} \psi (\theta_{i} )] \cdot T_{bolt} $$
$$ T_{bolt} = \left[ {\begin{array}{*{20}c} {I_{{N_{r} \times N_{r} }} } & {Z_{{N_{r} \times 3(N_{s} + N_{c} + N_{p} )}} } \\ \end{array} } \right] $$

1.22 Sun gear support damping matrix

$$ C_{bs} = T_{bs}^{T} \cdot c_{bs} \cdot T_{bs} $$
$$ T_{bs} = \left[ {\begin{array}{*{20}c} {Z_{{2 \times N_{r} }} } & {I_{2 \times 2} } & {Z_{{2 \times (1 + 3(N_{c} + N_{p} ))}} } \\ \end{array} } \right] $$

1.23 Carrier support damping matrix

$$ C_{bc} = T_{bc}^{T} \cdot c_{bc} \cdot T_{bc} $$
$$ T_{bc} = \left[ {\begin{array}{*{20}c} {Z_{{2 \times 3(N_{r} + N_{s)} }} } & {I_{2 \times 2} } & {Z_{{2 \times (1 + 3N_{p} )}} } \\ \end{array} } \right] $$

1.24 Planet gear support damping matrix

$$ C_{bp} = C_{bpx} + C_{bpy} $$
$$ C_{bpx} = (T_{bpx1} T_{bpx2} T_{bpx3} )^{T} c_{bp} (T_{bpx1} T_{bpx2} T_{bpx3} ) $$
$$ T_{bpx1} = \left[ {\begin{array}{*{20}c} 1 & {r_{c} } & { - 1} \\ \end{array} } \right] $$
$$ T_{bpx2} = \left[ {\begin{array}{*{20}c} {cos(\omega_{c} t + \varphi_{i} )} & { - sin(\omega_{c} t + \varphi_{i} )} & 0 \\ 0 & 0 & {I_{2 \times 2} } \\ \end{array} } \right] $$
$$ T_{bpx3} = \left[ {\begin{array}{*{20}c} {I_{3 \times 3} } & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times (N_{s} + N_{c} )}}} & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times N_{p} }}} \\ {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{N_{r} + 3 \times (N_{s} + N_{c} + i - 1)}}} & 1 & {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{2 + 3 \times (N_{p} - i)}}} \\ \end{array} } \right] $$
$$ C_{bpy} = (T_{bpy1} T_{bpy2} T_{bpy3} )^{T} c_{bp} (T_{bpy1} T_{bpy2} T_{bpy3} ) $$
$$ T_{bpy1} = \left[ {\begin{array}{*{20}c} 1 & { - 1} \\ \end{array} } \right] $$
$$ T_{bpy2} = \left[ {\begin{array}{*{20}c} {sin(\omega_{c} t + \varphi_{i} )} & {cos(\omega_{c} t + \varphi_{i} )} & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \end{array} } \right] $$
$$ T_{bpy3} = \left[ {\begin{array}{*{20}c} {I_{3 \times 3} } & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times (N_{s} + N_{c} )}}} & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times N_{p} }}} \\ {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{N_{r} + 3 \times (N_{s} + N_{c} + i - 1) + 1}}} & 1 & {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{2 + 3 \times (N_{p} - i) - 1}}} \\ \end{array} } \right] $$

1.25 Gyroscopic damping matrix

$$ C(\omega_{c}^{2} ) = C_{s} (\omega_{c}^{2} ) + C_{c} (\omega_{c}^{2} ) $$
$$ C_{s} (\omega_{c}^{2} ) = T_{s}^{T} \cdot 2m_{s} \omega_{c} \left[ {\begin{array}{*{20}c} 0 & { - 1} \\ 1 & 0 \\ \end{array} } \right] \cdot T_{s} $$
$$ T_{s} = \left[ {\begin{array}{*{20}c} {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{N_{r} }}} & {I_{2 \times 2} } & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{1 + 3 \times (N_{c} + N_{p} )}}} \\ \end{array} } \right] $$
$$ C_{c} (\omega_{c}^{2} ) = T_{c}^{T} \cdot 2m_{c} \omega_{c} \left[ {\begin{array}{*{20}c} 0 & { - 1} \\ 1 & 0 \\ \end{array} } \right] \cdot T_{c} $$
$$ T_{s} = \left[ {\begin{array}{*{20}c} {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{N_{r} + 3}}} & {I_{2 \times 2} } & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{1 + 3 \times N_{p} }}} \\ \end{array} } \right] $$

1.26 General force

$$ F = F_{load} + F_{excitation} $$
$$ F_{load} = \left[ {\begin{array}{*{20}c} {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{N_{r} + 2}}} & {T_{input} } & 0 & 0 & {T_{output} } & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times N_{p} }}} \\ \end{array} } \right] $$
$$ F_{excitation} = F_{esp} + F_{esp - diff} + F_{erp} + F_{erp - diff} + F_{bolt} $$
$$ F_{esp} = \sum\limits_{i = 1}^{{N_{p} }} {F_{esp}^{i} } ,F_{esp - diff} = \sum\limits_{i = 1}^{{N_{p} }} {F_{esp - diff}^{i} } $$
$$ F_{esp}^{i} = k_{sp} \cdot (T_{sp3} T_{sp2} T_{sp1} )^{T} e_{sp} ,F_{esp - diff}^{i} = c_{sp} \cdot (T_{sp3} T_{sp2} T_{sp1} )^{T} e_{sp - diff} $$
$$ T_{sp3} = \left[ {\begin{array}{*{20}c} {cos\alpha_{s} } & {sin\alpha_{s} } & {r_{bs} } & { - cos\alpha_{s} } & { - sin\alpha_{s} } & { - r_{bp} } \\ \end{array} } \right] $$
$$ T_{sp2} = \left[ {\begin{array}{*{20}c} {cos(\omega_{c} t + \varphi_{i} )} & { - sin(\omega_{c} t + \varphi_{i} )} & 0 \\ {sin(\omega_{c} t + \varphi_{i} )} & {cos(\omega_{c} t + \varphi_{i} )} & \vdots \\ 0 & \cdots & {Z_{4 \times 4} } \\ \end{array} } \right] $$
$$ T_{sp1} = \left[ {\begin{array}{*{20}c} {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{N_{r} }}} & {I_{3 \times 3} } & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times (N_{c} + N_{p} )}}} \\ {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{3 \times (N_{r} + N_{s} + N_{p} + i - 1)}}} & {I_{3 \times 3} } & {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{3 \times (N_{p} - i)}}} \\ \end{array} } \right] $$
$$ F_{erp} = \sum\limits_{i = 1}^{{N_{p} }} {F_{erp}^{i} } ,F_{erp - diff} = \sum\limits_{i = 1}^{{N_{p} }} {F_{erp - diff}^{i} } $$
$$ F_{erp}^{i} (t) = k_{rp} \cdot (T_{rp3} T_{rp2} T_{rp1} )^{T} e_{rp} ,F_{erp - diff}^{i} (t) = c_{rp} \cdot (T_{rp3} T_{rp2} T_{rp1} )^{T} e_{rp - diff} $$
$$ T_{rp3} = \left[ {\begin{array}{*{20}c} { - cos\alpha_{r} } & { - sin\alpha_{r} } & { - cos\alpha_{r} } & {sin\alpha_{r} } & {r_{bp} } \\ \end{array} } \right] $$
$$ T_{rp2} = \left[ {\begin{array}{*{20}c} {\gamma (\theta )} & 0 \\ {\psi (\theta )} & \vdots \\ 0 & {I_{3 \times 3} } \\ \end{array} } \right] $$
$$ T_{rp1} = \left[ {\begin{array}{*{20}c} {I_{{N_{r} \times N_{r} }} } & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times (N_{s} + N_{c} )}}} & {\overbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}^{{3 \times N_{p} }}} \\ {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{N_{r} + 3 \times (N_{s} + N_{c} + i - 1)}}} & {I_{3 \times 3} } & {\underbrace {{\begin{array}{*{20}c} 0 & \cdots & 0 \\ \end{array} }}_{{3 \times (N_{p} - i)}}} \\ \end{array} } \right] $$
$$ F_{bolt} = \sum\limits_{i = 1}^{{N_{sp} }} {F_{bolt}^{i} } $$
$$ F_{bolt}^{i} = k_{bolt} T_{bolt}^{T} \cdot [\gamma (\theta_{i} )^{T} e_{bolt - \theta } + \psi (\theta_{i} )^{T} e_{bolt - r} ] $$
$$ T_{bolt} = \left[ {\begin{array}{*{20}c} {I_{{N_{r} \times N_{r} }} } & {Z_{{N_{r} \times 3(N_{s} + N_{c} + N_{p} )}} } \\ \end{array} } \right] $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, X., Zhu, R. Dynamic behavior analysis of planetary gear transmission system with bolt constraint of the flexible ring gear. Meccanica 58, 1173–1204 (2023). https://doi.org/10.1007/s11012-023-01668-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-023-01668-z

Keywords

Navigation