Skip to main content

Advertisement

Log in

Controlling chaos in bi-stable energy harvesting systems using delayed feedback control

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Chaotic behavior in Bi-stable Energy Harvesters (BEHs) drastically decreases the harvested energy and makes the interface circuit design complicated and expensive. Control of chaos in BEHs has been proposed in few recent researches. In controlling chaos for BEHs, it is essential to notice that the amplitude of targeted High Energy Orbit (HEO) is unknown due to the variable nature of the amplitude of input excitation. Control of chaos in the BEHs is considered in this study to increase the energy harvester’s efficiency. A control system based on a chaos detection algorithm and delayed feedback control is presented to control chaos in the harvester. Chaos detection algorithm can predict chaotic behavior and distinguish chaotic behavior from measurement noise. The Delayed Feedback Controller can control the chaotic behavior in the bi-stable energy harvester without a need for the amplitude of the HEO to be known. Numerical simulations of the controlled system’s response show that the control system can successfully detect and control the chaos. The calculation of the output power of the controlled BEH indicates that the energy harvester has maximum output power when the control gain is set to be its minimum possible amount, and the time delay is precisely the time period of the input excitation. A study of the harvester’s energy balance is carried out, and the time required to recover the consumed energy in the actuator is achieved. This study shows that the controlled BEH can quickly recover the consumed energy in the controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wang J, Geng L, Ding L, Zhu H, Yurchenko D (2020) The state-of-the-art review on energy harvesting from flow-induced vibrations. Appl Energy 267:114902. https://doi.org/10.1016/j.apenergy.2020.114902

    Article  Google Scholar 

  2. Zhou M, Al-Furjan MSH, Zou J, Liu W (2018) A review on heat and mechanical energy harvesting from human: principles, prototypes and perspectives. Renew Sustain Energy Rev 82:3582–3609. https://doi.org/10.1016/j.rser.2017.10.102

    Article  Google Scholar 

  3. Deng Z, Dapino MJ (2017) Review of magnetostrictive vibration energy harvesters. Smart Mater Struct. https://doi.org/10.1088/1361-665X/aa8347

    Article  Google Scholar 

  4. Dell’Anna FG, Dong T, Li P, Wen Y, Yang Z, Casu MR et al (2018) State-of-the-art power management circuits for piezoelectric energy harvesters. IEEE Circuits Syst Mag 18:27–48. https://doi.org/10.1109/MCAS.2018.2849262

    Article  Google Scholar 

  5. Chew ZJ, Ruan T, Zhu M (2019) Power management circuit for wireless sensor nodes powered by energy harvesting: on the synergy of harvester and load. IEEE Trans Power Electron 34:8671–8681. https://doi.org/10.1109/TPEL.2018.2885827

    Article  Google Scholar 

  6. Salazar R, Serrano M, Abdelkefi A (2020) Fatigue in piezoelectric ceramic vibrational energy harvesting: a review. Appl Energy 270:115161. https://doi.org/10.1016/j.apenergy.2020.115161

    Article  Google Scholar 

  7. Huang L, Lin S, Xu Z, Zhou H, Duan J, Hu B et al (2020) Fiber-based energy conversion devices for human-body energy harvesting. Adv Mater 32:1–20. https://doi.org/10.1002/adma.201902034

    Article  Google Scholar 

  8. Tian J, Chen X, Wang ZL (2020) Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology. https://doi.org/10.1088/1361-6528/ab793e

    Article  Google Scholar 

  9. Slabov V, Kopyl S, Soares dos Santos MP, Kholkin AL (2020) Natural and eco-friendly materials for triboelectric energy harvesting. Nano-Micro Lett. https://doi.org/10.1007/s40820-020-0373-y

    Article  Google Scholar 

  10. Gholikhani M, Roshani H, Dessouky S, Papagiannakis AT (2020) A critical review of roadway energy harvesting technologies. Appl Energy 261:114388. https://doi.org/10.1016/j.apenergy.2019.114388

    Article  Google Scholar 

  11. Rafiqu S (2018) Piezoelectric vibration energy harvesting modeling & experiments. Springer, Berlin. https://doi.org/10.1515/9783110445053-005

    Book  Google Scholar 

  12. Sudevalayam S (2008) Energy harvesting sensor nodes: survey and implications. Commun Surv Tutor 13:443–461

    Article  Google Scholar 

  13. Kazmierski T, Beeby S (2010) Energy harvesting systems: principles, modeling and applications. https://doi.org/10.1007/978-1-4419-7566-9

  14. Spies P, Pollak M, Mateu L (2015) Handbook of energy harvesting power supplies and applications. https://doi.org/10.1201/b18523

  15. Selvan KV, Mohamed Ali MS (2016) Micro-scale energy harvesting devices: review of methodological performances in the last decade. Renew Sustain Energy Rev 54:1035–1047. https://doi.org/10.1016/j.rser.2015.10.046

    Article  Google Scholar 

  16. Deng Q, Kammoun M, Erturk A, Sharma P (2014) Nanoscale flexoelectric energy harvesting. Int J Solids Struct 51:3218–3225. https://doi.org/10.1016/j.ijsolstr.2014.05.018

    Article  Google Scholar 

  17. Petrini F, Giaralis A, Wang Z (2020) Optimal tuned mass-damper-inerter (TMDI) design in wind-excited tall buildings for occupants’ comfort serviceability performance and energy harvesting. Eng Struct. https://doi.org/10.1016/j.engstruct.2019.109904

    Article  Google Scholar 

  18. Tran N, Ghayesh MH, Arjomandi M (2018) Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement. Int J Eng Sci 127:162–185. https://doi.org/10.1016/j.ijengsci.2018.02.003

    Article  MathSciNet  MATH  Google Scholar 

  19. Wei C, Jing X (2017) A comprehensive review on vibration energy harvesting: modelling and realization. Renew Sustain Energy Rev 74:1–18. https://doi.org/10.1016/j.rser.2017.01.073

    Article  MathSciNet  Google Scholar 

  20. Haji Hosseinloo A, Turitsyn K (2017) Effective kinetic energy harvesting via structural instabilities. Act Passiv Smart Struct Integr Syst 2017(10164):101641G. https://doi.org/10.1117/12.2266144

    Article  Google Scholar 

  21. Yildirim T, Ghayesh MH, Li W, Alici G (2017) A review on performance enhancement techniques for ambient vibration energy harvesters. Renew Sustain Energy Rev 71:435–449. https://doi.org/10.1016/j.rser.2016.12.073

    Article  Google Scholar 

  22. Li C, Hong D, Kwon KH, Jeong J (2013) A multimode relayed piezoelectric cantilever for effective vibration energy harvesting. Jpn J Appl Phys. https://doi.org/10.7567/JJAP.52.050202

    Article  Google Scholar 

  23. Toyabur RM, Salauddin M, Cho H, Park JY (2018) A multimodal hybrid energy harvester based on piezoelectric-electromagnetic mechanisms for low-frequency ambient vibrations. Energy Convers Manag 168:454–466. https://doi.org/10.1016/j.enconman.2018.05.018

    Article  Google Scholar 

  24. Ahmad I, Khan FU (2018) Multimode vibration based electromagnetic type micro power generator for structural health monitoring of bridges. Sensors Actuators, A Phys 275:154–161. https://doi.org/10.1016/j.sna.2018.04.005

    Article  Google Scholar 

  25. Li X, Upadrashta D, Yu K, Yang Y (2019) Analytical modeling and validation of multimode piezoelectric energy harvester. Mech Syst Signal Process 124:613–631. https://doi.org/10.1016/j.ymssp.2019.02.003

    Article  Google Scholar 

  26. Daqaq MF, Masana R, Erturk A, Dane QD (2014) On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl Mech Rev 66:040801. https://doi.org/10.1115/1.4026278

    Article  Google Scholar 

  27. Sebald G, Kuwano H, Guyomar D, Ducharne B (2011) Experimental Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater Struct. https://doi.org/10.1088/0964-1726/20/10/102001

    Article  Google Scholar 

  28. Erturk A, Inman DJ (2011) Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J Sound Vib 330:2339–2353. https://doi.org/10.1016/j.jsv.2010.11.018

    Article  Google Scholar 

  29. Ghouli Z, Hamdi M, Belhaq M (2017) Energy harvesting from quasi-periodic vibrations using electromagnetic coupling with delay. Nonlinear Dyn 89:1625–1636. https://doi.org/10.1007/s11071-017-3539-5

    Article  Google Scholar 

  30. Ghouli Z, Hamdi M, Lakrad F, Belhaq M (2017) Quasiperiodic energy harvesting in a forced and delayed Duffing harvester device. J Sound Vib 407:271–285. https://doi.org/10.1016/j.jsv.2017.07.005

    Article  Google Scholar 

  31. Karličić D, Cajić M, Paunović S, Adhikari S (2020) Nonlinear energy harvester with coupled Duffing oscillators. Commun Nonlinear Sci Numer Simul 91:105394. https://doi.org/10.1016/j.cnsns.2020.105394

    Article  MathSciNet  MATH  Google Scholar 

  32. McInnes CR, Gorman DG, Cartmell MP (2008) Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J Sound Vib 318:655–662

    Article  Google Scholar 

  33. Cottone F, Vocca H, Gammaitoni L (2009) Nonlinear energy harvesting. Phys Rev Lett 080601:1–4. https://doi.org/10.1103/PhysRevLett.102.080601

    Article  Google Scholar 

  34. Erturk A, Hoffmann J, Inman DJ (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys Lett 94:92–95. https://doi.org/10.1063/1.3159815

    Article  Google Scholar 

  35. Mann BP, Owens BA (2010) Investigations of a nonlinear energy harvester with a bistable potential well. J Sound Vib 329:1215–1226. https://doi.org/10.1016/j.jsv.2009.11.034

    Article  Google Scholar 

  36. Stanton SC, Owens BAM, Mann BP (2012) Harmonic balance analysis of the bistable piezoelectric inertial generator. J Sound Vib 331:3617–3627. https://doi.org/10.1016/j.jsv.2012.03.012

    Article  Google Scholar 

  37. He Q, Daqaq MF (2015) New insights into utilizing bistability for energy harvesting under white noise. J Vib Acoust 137:021009. https://doi.org/10.1115/1.4029008

    Article  Google Scholar 

  38. Harne RL, Zhang C, Li B, Wang KW (2016) An analytical approach for predicting the energy capture and conversion by impulsively-excited bistable vibration energy harvesters. J Sound Vib 373:205–222. https://doi.org/10.1016/j.jsv.2016.03.012

    Article  Google Scholar 

  39. Dai Q, Harne RL (2018) Investigation of direct current power delivery from nonlinear vibration energy harvesters under combined harmonic and stochastic excitations. J Intell Mater Syst Struct 29:514–529. https://doi.org/10.1177/1045389X17711788

    Article  Google Scholar 

  40. Nguyen MS, Yoon YJ, Kwon O, Kim P (2017) Lowering the potential barrier of a bistable energy harvester with mechanically rectified motion of an auxiliary magnet oscillator. Appl Phys Lett 10(1063/1):4994111

    Google Scholar 

  41. Harne RL, Wang KW (2013) A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct 22:023001. https://doi.org/10.1088/0964-1726/22/2/023001

    Article  Google Scholar 

  42. Wang G, Liao WH, Yang B, Wang X, Xu W, Li X (2018) Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier. Mech Syst Signal Process 105:427–446. https://doi.org/10.1016/j.ymssp.2017.12.025

    Article  Google Scholar 

  43. Kumar A, Ali SF, Arockiarajan A (2016) Enhanced energy harvesting from nonlinear oscillators via chaos control. IFAC-PapersOnLine 49:35–40. https://doi.org/10.1016/j.ifacol.2016.03.025

    Article  Google Scholar 

  44. Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64:1196–1199. https://doi.org/10.1103/PhysRevLett.64.1196

    Article  MathSciNet  MATH  Google Scholar 

  45. Daqaq MF, Crespo RS, Ha S (2020) On the efficacy of charging a battery using a chaotic energy harvester. Nonlinear Dyn 99:1525–1537. https://doi.org/10.1007/s11071-019-05372-0

    Article  Google Scholar 

  46. Huynh BH, Tjahjowidodo T, Zhong Z-W, Wang Y, Srikanth N (2018) Design and experiment of controlled bistable vortex induced vibration energy harvesting systems operating in chaotic regions. Mech Syst Signal Process 98:1097–1115. https://doi.org/10.1016/j.ymssp.2017.06.002

    Article  Google Scholar 

  47. Haji Hosseinloo A, Slotine J-J, Turitsyn K (2017) Robust and adaptive control of coexisting attractors in nonlinear vibratory energy harvesters. J Vib Control. https://doi.org/10.1177/1077546316688992

    Article  Google Scholar 

  48. Yousefpour A, Haji Hosseinloo A, Reza Hairi Yazdi M, Bahrami A (2020) Disturbance observer–based terminal sliding mode control for effective performance of a nonlinear vibration energy harvester. J Intell Mater Syst Struct 31:1495–510. https://doi.org/10.1177/1045389X20922903

    Article  Google Scholar 

  49. Schuster HG, Parlitz U, Kocarev L (2008) Handbook of chaos control. Wiley-VCH Verlag GmbH & Co .KGaA. https://doi.org/10.1002/3527607455.ch11

  50. Kodba S, Perc M, Marhl M (2005) Detecting chaos from a time series. Eur J Phys 26:205–215. https://doi.org/10.1088/0143-0807/26/1/021

    Article  Google Scholar 

  51. Costa M, Goldberger A, Peng C (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.89.068102

    Article  Google Scholar 

  52. Roux JC, Simoyi RH, Swinney HL (1983) Observation of a strange attractor. Phys D Nonlinear Phenom 8:257–266. https://doi.org/10.1016/0167-2789(83)90323-8

    Article  MathSciNet  MATH  Google Scholar 

  53. Falconer I, Gottwald GA, Melbourne I, Wormnes K (2007) Application of the 0–1 test for chaos to experimental data. SIAM J Appl Dyn Syst 6:395–402. https://doi.org/10.1137/060672571

    Article  MathSciNet  MATH  Google Scholar 

  54. Abarbanel HDI (1996) Analysis of observed chaotic data. https://doi.org/10.1007/978-1-4612-0763-4

  55. Skokos CH, Gottwald GA (2016) Chaos detection and predictability. Springer, Berlin. https://doi.org/10.1007/978-3-662-48410-4

    Book  MATH  Google Scholar 

  56. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining lyapunov exponents from a time series. Phys D Nonlinear Phenom 16:285–317. https://doi.org/10.1016/0167-2789(85)90011-9

    Article  MathSciNet  MATH  Google Scholar 

  57. Gottwald BGA, Melbourne I, Lyapunov H (2004) A new test for chaos in deterministic systems. Proc R Soc Lond A 460(2042):603–611

    Article  MathSciNet  MATH  Google Scholar 

  58. Harris P, Bowen CR, Kim HA, Litak G (2016) Dynamics of a vibrational energy harvester with a bistable beam: voltage response identification by multiscale entropy and “0–1” test. Eur Phys J Plus. https://doi.org/10.1140/epjp/i2016-16109-4

    Article  Google Scholar 

  59. Gottwald GA, Melbourne I (2009) On the validity of the 0–1 test for chaos. Nonlinearity 22:1367–1382. https://doi.org/10.1088/0951-7715/22/6/006

    Article  MathSciNet  MATH  Google Scholar 

  60. Pyragas K (1992) Continuous control of chaos by self-controlling feedback. Phys Lett Sect A Gen At Solid State Phys 170:421–428

    Google Scholar 

  61. Fradkov AL, Evans RJ (2005) Control of chaos: methods and applications in engineering. Annu Rev Control 29:33–56. https://doi.org/10.1016/j.arcontrol.2005.01.001

    Article  Google Scholar 

  62. Pyragas K (2006) Delayed feedback control of chaos. Philos Trans R Soc A Math Phys Eng Sci 364:2309–2334. https://doi.org/10.1098/rsta.2006.1827

    Article  MathSciNet  MATH  Google Scholar 

  63. Kittel A, Parisi J, Pyragas K (1995) Delayed feedback control of chaos by self-adapted delay time. Phys Lett A 198:433–436. https://doi.org/10.1016/0375-9601(95)00094-J

    Article  Google Scholar 

  64. Masana R, Daqaq MF (2011) Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. J Sound Vib 330:6036–6052. https://doi.org/10.1016/j.jsv.2011.07.031

    Article  Google Scholar 

Download references

Acknowledgements

The authors M. Mohammadpour, P. Safarpour, R. Gavagsaz-Ghoachani, and M. Zandi gratefully acknowledge the Tehran Urban Research and Planning Center for their support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zandi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadpour, M., Abdelkefi, A., Safarpour, P. et al. Controlling chaos in bi-stable energy harvesting systems using delayed feedback control. Meccanica 58, 587–606 (2023). https://doi.org/10.1007/s11012-022-01599-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-022-01599-1

Keywords

Navigation