Skip to main content

Advertisement

Log in

Probabilistic analysis and ghost-stochastic resonance of a hybrid energy harvester under Gaussian White noise

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this present work, a hybrid energy scavenger using two mechanisms of transduction namely piezoelectric and electromagnetic and subjected to the Gaussian white noise is investigated. The stochastic averaging method is used here in other to construct the Fokker–Plank–Kolmogorov equation of the system whose the statistic response in the stationary state is the probability density. The mean square voltage and current are obtained for different value of white noise intensities as the output power generated by piezoelectric circuit and electromagnetic circuit. In addition, combining the Gaussian white noise and coherence excitation, the Ghost-Stochastic resonance is observed through the mean residence time and improve the amount of energy harvested by the scavenger. The agreement between the analytical method and those obtained numerically validates the effectiveness of analytical investigations. The results obtained in this manuscript reveal that, while the natural frequency is absent in the external coherent force, the amount of energy harvested by the energy scavenging device can be improved for certain value of noise intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mitcheson PD, Miao P, Stark BH, Yeatman EM, Holmes AS, Green TC (2004) MEMS electrostatic micropower generator for low frequency operation. Sens Actuators, A 115:523

    Google Scholar 

  2. Sari I, Balkan T, Kulah H (2008) An electromagnetic micro power generator for wideband environmental vibrations. Sens Actuators, A 145:405

    Google Scholar 

  3. Buckjohn CND, Martin SS, Mokem Fokou IS, Tchawoua C, Kofane TC (2013) Investigating bifurcations and chaos in magnetopiezoelastic vibrating energy harvesters using Melnikov theory. Phys Scr 88:015006

    Google Scholar 

  4. Elvin N, Erturk A (2013) Advances in energy harvesting methods. Springer, New York

    Google Scholar 

  5. Daqaq MF, Masana R, Erturk A, Quinn DD (2014) On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl Mech Rev 66:040801

    Google Scholar 

  6. Mann BP, Owens BA (2010) Investigations of a nonlinear energy harvester with a bistable potential well. J Sound Vib 329:1215–1226

    Google Scholar 

  7. Elvin NG, Elvin AA, Spector M (2001) A self-powered mechanical strain energy sensor. Smart Mater Struct 10(2):293–299

    Google Scholar 

  8. Kim HW, Priya S, Uchino K, Newnham RE (2005) Piezoelectric energy harvesting under high pre-stressed cyclic vibrations. J Electroceramics 15(1):27–34

    Google Scholar 

  9. Lee B, Wei L (2010) Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. J Micro/Nanolith MEMS MOEMS 9(Apr–Jun (2)):023002

    Google Scholar 

  10. Wang C, Yanlong C, Jin X (2015) Piezoelectric and electromagnetic hybrid energy harvester for powering wireless sensor nodes in smart grid. J Mech Sci Technol 29:4313

    Google Scholar 

  11. Madinei H, Haddad KH, Adhikari S, Friswell MI (2016) A hybrid piezoelectric and electrostatic vibration energy, harvester. In: Brandt A, Singhal R, (eds), Shock, vibration, aircraft/aerospace, energy harvesting acoustics optics, vol 9 pp 189–95

  12. Cottone F, Vocca H, Gammaitoni L (2009) Nonlinear energy harvesting. Phys Rev Lett 102:08060

    Google Scholar 

  13. Mokem Fokou IS, Nono Dueyou Buckjohn C, Siewe Siewe M, Tchawoua C (2016) Probabilistic behavior analysis of a sandwiched buckled beam under Gaussian white noise with energy harvesting perspectives. Chaos, Solitons Fractals 92:101–114

    MathSciNet  MATH  Google Scholar 

  14. Fokou ISM, Buckjohn CND, Siewe MS, Tchawoua C (2018) Probabilistic distribution and stochastic P-bifurcation of a hybrid energy harvester under colored noise Commun. Nonlinear Sci Numer Simulat 56:177–197

    Google Scholar 

  15. Foupouapouognigni O, Nono Dueyou Buckjohn C, Siewe Siewe M, Tchawoua C (2018) Hybrid electromagnetic and piezoelectric vibration energy harvester with Gaussian white noise excitation. Physica A Stat Mech Appl 509:346–360

    MathSciNet  Google Scholar 

  16. Berthet R, Petrosyan A, Roman B (2002) Am J Phys 70:744

    Google Scholar 

  17. Rowland DR (2004) Am J Phys 72:758

    Google Scholar 

  18. Chialvo DR, Calvo O, Gonzalez DL, Piro O, Savino GV (2002) Phys Rev E 65:050902(R)

    MathSciNet  Google Scholar 

  19. Chialvo DR (2003) Chaos 13:1226

    Google Scholar 

  20. Buldu JM, Chialvo DR, Mirasso CR, Torrent MC, Garcia-Ojalvo J (2003) Europhys Lett 64:178

    Google Scholar 

  21. Buldu JM, Gonzalez CM, Trull J, Torrent MC, Garcia-Ojalvo J (2005) Chaos 15:013103

    Google Scholar 

  22. Van der Sande G, Verschaffelt G, Danckaert J, Mirrasso CR (2005) Phys Rev E 72:016113

    Google Scholar 

  23. Lefeuvre E, Badel A, Richard C, Petit L, Guyomar D (2006) A comparison between several vibration-powered piezoelectric generators for standalone systems. Sens Actuators A 126(2):405–416

    Google Scholar 

  24. Mokem Fokou IS, Nono Dueyou Buckjohn C, Siewe Siewe M, Tchawoua C (2017) Nonlinear analysis and analog simulation of a piezoelectric buckled beam with fractional derivative. Eur Phys J Plus 132:344

    MATH  Google Scholar 

  25. Mokem Fokou IS, Nono Dueyou Buckjohn C, Siewe Siewe M, Tchawoua C (2018) Circuit implementation of a piezoelectric buckled beam and its response under fractional components considerations. Meccanica 53(8):2029–2052

    MathSciNet  MATH  Google Scholar 

  26. Knight C, Davidson J, Behrens S (2008) Energy options for wireless sensor nodes. Sensors 8(12):8037–8066

    Google Scholar 

  27. Miki D, Honzumi M, Suzuki Y, Kasagi N (2010). Large-amplitude mems electret generator with nonlinear spring. In: Proceedings of IEEE conference on microelectromechanical systems (MEMS) 2010, 24–28 January 2010, Wanchai, Hong Kong, (pp. 176–179)

  28. Yanxia Z, Yanfei J, Pengfei X, Shaomin X (2020) Stochastic bifurcations in a nonlinear tri-stable energy harvester under coloured noise. Nonlinear Dyn 99:879–897

    Google Scholar 

  29. Constantinou P, Roy S (2016) A 3D printed electromagnetic nonlinear vibration energy harvester. Smart Mater Struct 25(9):095053 (1-14)

    Google Scholar 

  30. Junlei W, Linfeng G, Shengxi Z, Zhien Z, Zhihui L, Daniil Y (2020) Design, modelling and experiments of broadband tristable galloping piezoelectric energy harvester. Acta Mechanica Sinica. https://doi.org/10.1007/s10409-020-00928-5

    Article  Google Scholar 

  31. Toyabur RM, Salauddin M, Hyunok C, Park Jae Y (2018) A multimodal hybrid energy harvester based on piezoelectric-electromagnetic mechanisms for low-frequency ambient vibrations. Energy Convers Manage 168:454–466

    Google Scholar 

  32. Fan KQ, Chang JW, Pedrycz W, Liu ZH, Zhu YM (2015) A nonlinear piezoelectric energy harvester for various mechanical motions. Appl Phys Lett 106:223902

    Google Scholar 

  33. Tang LH, Yang YW, Soh CK (2012) Improving functionality of vibration energy harvesters using magnets. J Intell Mater Syst Struct 23:1433–49

    Google Scholar 

  34. Fan KQ, Chang JW, Chao FB, Pedrycz W (2015) Design and development of a multipurpose piezoelectric energy harvester. Energ Convers Manage 96:430–39

    Google Scholar 

  35. Salar C, Hasan U, Ali M, Berkay C, Haluk K (2015) Power-efficient hybrid energy harvesting system for harnessing ambient vibrations. IEEE Trans Circuits Syst I Regul Pap 66(7):2784–2793 2019

    Google Scholar 

  36. Kangqi F, Qinxue T, Haiyan L, Daxing Z, Yingmin Z, Weidong W (2018) Hybrid piezoelectric-electromagnetic energy harvester for scavenging energy from low-frequency excitations. Smart Mater Struct 27(8):085001

    Google Scholar 

  37. Mahmoudi S, Kacem N, Bouhaddi N (2014) Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions. Smart Mater Struct 23:075024

    Google Scholar 

  38. Xia H, Chen R, Ren L (2015) Analysis of piezoelectric—electromagnetic hybrid vibration energy harvester under different electrical boundary conditions. Sens Actuators A 234:87–98

    Google Scholar 

  39. Aylin T (2018) Noise Reduction Techniques for Medical Equipment Manufacturers, Advancements in Noise Reduction Techniques for Medical Equipment Manufacturers, Parker Hannifin Corporation

  40. Dzhambov Angel M, Dimitrova Donka D (2016) Heart disease attributed to occupational noise, vibration and other co-exposure: self-reported population-based survey among Bulgarian workers. Med Pr 67(4):435–445

    Google Scholar 

  41. Ilona C, Michael GS, Kerstin PW (2013) Effects of train noise and vibration on human heart rate during sleep: an experimental study. BMJ Open 3(5):e002655

    Google Scholar 

  42. Tassi P, Saremi M, Schimchowitsch S, Eschenlauer A, Rohmer O, Muzet A (2010) Eur J Appl Physiol 108:671–680

    Google Scholar 

  43. Sandra P, De Elke V, Raymond C (2010) Nocturnal road traffic noise: a review on its assessment and consequences on sleep and health. Environ Int 36:492–498

    Google Scholar 

  44. Joseph G (1960) Gallop rhythm of the heart: I atrial gallop, ventricular gallop and systolic sounds. Am J Med 28(4):578–592

    Google Scholar 

  45. Schmidt SE, Graebe M, Toft E, Struijk JJ (2011) No evidence of nonlinear or chaotic behaviour of cardiovascular murmurs. Biomed Signal Process Control 6(2):157–163

    Google Scholar 

  46. Thomas SL, Makaryus AN (2020) Physiology, cardiovascular murmurs. [Updated 2019 Jun 3]. In: Stat Pearls [Internet]. Treasure Island (FL): Stat Pearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK525958

  47. Mantegna RN, Spagnolo B, Testa L, Trapanese M (2005) Stochastic resonance in magnetic systems described by Preisach hysteresis model. J Appl Phys 97:223–87

    Google Scholar 

  48. Arathi S, Rajasekar S, Kurths J (2011) Characteristics of stochastic resonance in asymmetric dufing oscillator. Int J Bifurcation Chaos 21:2729

    MATH  Google Scholar 

  49. Gammaitoni L, Hanggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70:223–87. https://doi.org/10.1103/RevModPhys.70.223

    Article  Google Scholar 

  50. Zheng R, Nakano K, Hu H, Su D, Cartmell MP (2014) An application of stochastic resonance for energy harvesting in a bistable vibrating system. J Sound Vib 333:2568–87

    Google Scholar 

  51. Hu H, Nakano K, Cartmell M, Zheng R, Ohori M (2012) An experimental study of stochastic resonance in a bistable mechanical system. J Phys 382:012024 (1-6)

    Google Scholar 

  52. Buldu JM, Chialvo DR, Mirasso CR, Torrent MC, Garcia-Ojalvo J (2003) Ghost resonance in a semiconductor laser with optical feedback. Europhys Lett 64:178

    Google Scholar 

  53. Buldu JM, Gonzalez CM, Trull J, Torrent MC, Garcia-Ojalvo J (2005) Coupling-mediated ghost resonance in mutually injected lasers. Chaos 15:013103

    Google Scholar 

  54. Van der Sande G, Verschaffelt G, Danckaert J, Mirrasso CR (2005) Ghost stochastic resonance in vertical-cavity surface-emitting lasers: experiment and theory. Phys Rev E 72:016113

    Google Scholar 

  55. Lopera A, Buldu JM, Torrent MC, Chialvo DR, Garcia-Ojalvo J (2006) Ghost stochastic resonance with distributed inputs in pulse-coupled electronic neurons. Phys Rev E 73:021101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Mokem Fokou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fezeu, G.J., Fokou, I.S.M., Buckjohn, C.N.D. et al. Probabilistic analysis and ghost-stochastic resonance of a hybrid energy harvester under Gaussian White noise. Meccanica 55, 1679–1691 (2020). https://doi.org/10.1007/s11012-020-01204-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01204-3

Keywords

Navigation