Skip to main content
Log in

A numerical study of micropolar flow inside a lid-driven triangular enclosure

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A study is carried out to analyze the mixed convection flow and heat transfer inside a lid-driven triangular conduit under the effects of micro-gyration boundary conditions. The micropolar constitutive equation characterizes the fluid inside the cavity. The lower boundary is at a uniform temperature and sliding in its plane with constant velocity u0, while the inclined walls are cold. Dual cases are considered here, namely the intense concentration (d) and the weak concentration of microelements (\(m = 0.5\)). The governing nonlinear equations are simulated employing the Galerkin finite element method, where the pressure term is handled via the Penalty approach. Using the numerical data, graphical results are produced to illustrate the effects of physical parameters. Specifically, this refers to the effects of the Grashof number (Gr), Prandtl number (Pr), Reynolds number (Re) and vortex viscosity parameter (K) on the streamlines, mid-section velocity profiles, temperature contours, and local and average Nusselt numbers on the cold and heated boundaries of the conduit. Particular emphasis is given on the identification of the set of parameters for which simultaneous symmetry in streamlines and isotherms prevails. The grid independence test is also performed by comparing the average Nusselt numbers (on the hot and cold boundaries of the conduit) for various mesh sizes, and the optimal solution is found. Moreover, the results are also benchmarked with the previously published data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(Pr\) :

Prandtl number

\(Gr\) :

Grashof number

\(R\) :

Residual of weak form

\(N\) :

Dimensional micro-rotation vector

\(Nu\) :

Local Nusselt number

\(Nu_{C}\) :

Nusselt number at inclined cold walls of cavity

\(Nu_{H}\) :

Nusselt number at hot wall of cavity

\(m\) :

Micro-gyration parameter

\(p\) :

Dimensional pressure

T :

Dimensional temperature

\(T_{H}\) :

Temperature of heated hot surface

\(T_{C}\) :

Temperature of cold walls

\(u\) :

Dimensional longitudinal velocity

\(v\) :

Dimensional transverse velocity

\(\bar{u}\) :

Dimensionless longitudinal velocity component

\(\bar{v}\) :

Dimensionless transverse velocity component

K :

Ratio of vortex and dynamic viscosities

\(\kappa\) :

Vortex viscosity

\(k\) :

Thermal conductivity of fluid

\(\bar{p}\) :

Dimensionless pressure

\(\bar{N}\) :

Dimensionless micro-rotation vector

\(j\) :

Micro-rotation per unit mass

\(Re\) :

Reynolds number

g :

Magnitude of gravitational acceleration

\(J\) :

Jacobian matrix of residual system

\(\alpha\) :

Viscosity gradient coefficient

β :

Viscosity gradient coefficient

γ :

Viscosity gradient coefficient

\(\beta_{0}\) :

Volume expansion coefficient

\(\nu\) :

Kinematic viscosity

\(\rho\) :

Density of fluid

\(\mu\) :

Dynamic viscosity

\(\bar{\theta }\) :

Dimensionless temperature

\(\psi\) :

Stream function

\(j\) :

Residual number

\(\delta\) :

Penalty parameter

\(\phi\) :

Shape function

\(b\) :

Bottom wall of the cavity

\(C\) :

Cold wall of the cavity

\(H\) :

Hot wall of the cavity

\(i\) :

Node number

\(s\) :

Sidewall of the cavity

\(n\) :

Total number of nodes

\(e\) :

Element number

References

  1. Eringen AC (2001) Microcontinuum field theories, vol I, II. Springer, New York

    MATH  Google Scholar 

  2. Eringen AC (1964) Simple micro fluids. Int J Eng Sci 2:205–217

    Article  MATH  Google Scholar 

  3. Eringen AC (1966) Theory of micropolar fluid. J Math Mech 16:1–18

    MathSciNet  Google Scholar 

  4. Eringen AC (1972) Theory of thermomicro fluids. J Math Anal Appl 38:480–496

    Article  Google Scholar 

  5. Łukaszewicz G (1999) Micropolar fluids: theory and application. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  6. Florea OA, Roşca IC (2015) Stokes’ second problem for a micropolar fluid with slip. PLoS ONE 10(7):e0131860

    Article  Google Scholar 

  7. Florea OA, Roşca IC (2014) A novel approach of the stokes’ second problem for the synovial fluid in knee osteoarthrosis. J. Osteoarthr Cartil S109:S110

    Google Scholar 

  8. Hsu TH, Hsu PT, Chen CK (1995) Thermal convection of micropolar fluids in a lid-driven cavity. Int Commun Heat Mass Transf 22:198–200

    Article  Google Scholar 

  9. Hsu TH, Chen CK (1996) Natural convection of micropolar fluids in a rectangular enclosure. Int J Eng Sci 34:407–415

    Article  MATH  Google Scholar 

  10. Hsu TH, Wang SG (2000) Mixed convection of micropolar fluids in a cavity. Int J Heat Mass Transf 43:1563–1572

    Article  MATH  Google Scholar 

  11. Maiti G (1975) Convective heat transfer in micropolar fluid flow through a horizontal parallel plate channel. ZAMM 58:85–92

    MATH  Google Scholar 

  12. Gibanov NS, Sheremet MA, Pop I (2016) Free convection in a trapezoidal cavity filled with a micropolar fluid. Int J Heat Mass Transf 99:831–838

    Article  Google Scholar 

  13. Balaram M, Sastri VUK (1973) Micropolar free convection flow. Int J Heat Mass Transf 16:437–441

    Article  Google Scholar 

  14. Hsu TH, Hong KY (2006) Natural convection of micropolar fluids in an open cavity. Numer Heat Transf Part A 50:281–300

    Article  ADS  Google Scholar 

  15. Chamkha AJ, Mansour MA, Ahmed SE (2010) Unsteady mixed convection of a micropolar fluid in a lid-driven cavity: effects of different micro-gyration boundary conditions. Int J Energy Technol 2(6):1–11

    Google Scholar 

  16. Zadravec M, Hribersek M, Skerget L (2009) Natural convection of micropolar fluid in an enclosure with boundary element method. Eng Anal Bound Elem 33:485–492

    Article  MathSciNet  MATH  Google Scholar 

  17. Gibanov NS, Sheremet MA, Pop I (2016) Natural convection of micropolar fluid in a wavy differentially heated cavity. J Mol Liq 221:518–525

    Article  Google Scholar 

  18. Sheremet MA, Pop I, Ishak A (2017) Time-dependent natural convection of micropolar fluid in a wavy triangular cavity. Int J Heat Mass Transf 105:610–622

    Article  Google Scholar 

  19. Alloui Z, Vasseur P (2010) Natural convection in a shallow cavity filled with a micropolar fluid. Int J Heat Mass Transf 53:2750–2759

    Article  MATH  Google Scholar 

  20. Asadi H, Javaherdeh K, Ramezani S (2013) Finite element simulation of micropolar fluid flow in the lid-driven square cavity. Int J Appl Mech 5(4):(1350045)1–(1350045)26

    Google Scholar 

  21. Saleem M, Hossain MA, Saha SC (2012) Mixed convection flow of micropolar fluid in an open ended arc-shape cavity. J Fluids Eng 134:(091101)1–(091101)9

    Article  Google Scholar 

  22. Saleem M, Asghar S, Hossain MA (2011) Natural convection flow of micropolar fluid in a rectangular cavity heated from below with cold side walls. Math Comput Modell 54:508–518

    Article  MATH  Google Scholar 

  23. Bhargava R, Bég OA, Sharma S, Zueco J (2010) Finite element study of nonlinear two-dimensional deoxygenated biomagnetic micropolar flow. Commun Nonlinear Sci Numer Simulat 15:1210–1223

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Jena SK, Bhattacharyya SP (1986) The effect of microstructure on the thermal convection in a rectangular box of fluid heated from below. Int J Eng Sci 24:69–78

    Article  MathSciNet  MATH  Google Scholar 

  25. Tetbirt A, Bouaziz MN, Abbes MT (2016) Numerical study of magnetic effect on the velocity distribution field in a macro/micro-scale of a micropolar and viscous fluid in vertical channel. J Mol Liq 216:103–110

    Article  Google Scholar 

  26. Fakour M, Vahabzadeh A, Ganji DD, Hatami M (2015) Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls. J Mol Liq 204:198–204

    Article  Google Scholar 

  27. Chamkha AJ, Grosan T, Pop I (2003) Fully developed mixed convection of a micropolar fluid in a vertical channel. Int J Fluid Mech Res 30(3):251–263

    Article  Google Scholar 

  28. Chamkha AJ, Grosan T, Pop I (2002) Fully developed free convection of a micropolar fluid in a vertical channel. Int Commun Heat Mass Transf 29(8):1119–1127

    Article  Google Scholar 

  29. Miroshnichenko IV, Sheremet MA, Pop I (2017) Natural convection in a trapezoidal cavity filled with a micropolar fluid under the effect of a local heat source. Int J Mech Sci 120:182–189

    Article  Google Scholar 

  30. Sheremet M, Grosan T, Pop I (2017) Natural convection in a triangular cavity filled with a micropolar fluid. Int J Numer Methods Heat Fluid Flow 27:504–515

    Article  Google Scholar 

  31. Ching YC, Oztop HF, Rahman MM, Islam MR, Ahsan A (2012) Finite element simulation of mixed convection heat and mass transfer in a right triangular enclosure. Int Commun Heat Mass Transf 39:689–696

    Article  Google Scholar 

  32. Oztop HF, Varol Y, Koca A, Firat M (2012) Experimental and numerical analysis of buoyancy-induced flow in inclined triangular enclosures. Int Commun Heat Mass Transf 39:1237–1244

    Article  Google Scholar 

  33. Hasanuzzaman M, Rahman MM, Oztop HF, Rahim NA, Saidur R (2012) Effects of Lewis number on heat and mass transfer in a triangular cavity. Int Commun Heat Mass Transf 39:1213–1219

    Article  Google Scholar 

  34. Erturk E, Gokcol O (2007) Fine grid numerical solutions of triangular cavity flow. Eur Phys J Appl Phys 38:97–105

    Article  ADS  Google Scholar 

  35. Jyotsna R, Vanka SP (1995) Multigrid calculation of steady, viscous flow in a triangular cavity. J Comput Phys 122:107–117

    Article  ADS  MATH  Google Scholar 

  36. Ribbens CJ, Watson LT (1994) Steady viscous flow in a triangular cavity. J Comput Phys 112:173–181

    Article  ADS  MATH  Google Scholar 

  37. Rahman MM, Oztop HF, Ahsan A, Orfi J (2012) Natural convection effects on heat and mass transfer in a curvilinear triangular cavity. Int J Heat Mass Transf 55:6250–6259

    Article  Google Scholar 

  38. Basak T, Roy S, Sharma PK, Pop I (2009) Analysis of mixed convection flows within a square cavity with uniform and non-uniform heating of bottom wall. Int J Therm Sci 48:891–912

    Article  Google Scholar 

  39. Peddieson J (1972) An application of the micropolar fluid model to the calculation of a turbulent shear flow. Int J Eng Sci 10:23–32

    Article  Google Scholar 

  40. Chung TJ (2002) Computational fluid dynamics. Cambridge University Press, Cambridge, pp 1–1012

    Book  Google Scholar 

  41. Reddy JN (1993) An introduction to the finite element method. McGraw Hill, New York, pp 01–761

    Google Scholar 

  42. MATLAB 2010 (2010) The Mathworks, Natick

  43. Ali N, Nazeer F, Nazeer M (2018) Flow and heat transfer analysis of Eyring–Powell fluid in a pipe. Zeitschrift für Naturforschung A (ZNA) 73(3):265–274

    Article  ADS  Google Scholar 

  44. Nazeer M, Ali N, Javed T (2017) Numerical simulation of MHD flow of micropolar fluid inside a porous inclined cavity with uniform/non-uniform heated bottom wall. Can J Phys. https://doi.org/10.1139/cjp-2017-0639

    Google Scholar 

  45. Javed T, Mehmood Z, Siddiqui MA (2017) Effects of uniform magnetic field on the natural convection of Cu-water nanofluid in a triangular cavity with uniformly and non-uniformly heated side wall. Int J Numer. Methods Heat Fluid Flow 27:334–357

    Article  Google Scholar 

  46. Javed T, Siddiqui MA, Mehmood Z, Pop I (2015) MHD natural convective flow in an isosceles triangular cavity filled with porous medium due to uniform/non-uniform heated side walls. Zeitschrift für Naturforschung A 70:919–928

    Article  Google Scholar 

  47. Moallemi MK, Jang KS (1992) Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity. Int J Heat Mass Transf 35:1881–1892

    Article  MATH  Google Scholar 

  48. Ramakrishna D, Basak T, Roya S, Pop I (2012) A complete heatline analysis on mixed convection within a square cavity: effects of thermal boundary conditions via thermal aspect ratio. Int J Therm Sci 57:98–111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mubbashar Nazeer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N., Nazeer, M., Javed, T. et al. A numerical study of micropolar flow inside a lid-driven triangular enclosure. Meccanica 53, 3279–3299 (2018). https://doi.org/10.1007/s11012-018-0884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0884-5

Keywords

Navigation