Skip to main content
Log in

Duty cycle and directional jet effects of a plasma actuator on the flow control around a NACA0015 airfoil

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper reports on the effects of a series of fluid-dynamic dielectric barrier discharge plasma actuators on a NACA0015 airfoil at high angle of attack. A set of jet actuators able to produce plasma jets with different directions (vectoring effect) and operated at different on/off duty cycle frequencies are used. The experiments are performed in a wind tunnel facility. The vectorized jet and the transient of the flow induced by unsteady duty cycle operation of each actuator are examined and the effectiveness of the actuator to recover stall condition in the range of Reynolds numbers between 1.0 × 105 and 5.0 × 105 (based on airfoil chord), is investigated. The actuator placed on the leading edge of the airfoil presents the most effective stall recovery. No significant effects can be observed for different orientations of the jet. An increase of the stall recovery is detected when the actuator is operated in unsteady operation mode. Moreover, the frequency of the on/off duty cycle that maximizes the stall recovery is found to be a function of the free stream velocity. This frequency seems to scale with the boundary layer thickness at the position of the actuator. A lift coefficient increase at low free stream velocities appears to linearly depend on the supply voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Neretti G (2016) Active flow control by using plasma actuators, recent progress in some aircraft technologies. In: Ramesh Agarwal (ed) InTech. doi: 10.5772/62720

  2. Moreau E (2007) Airflow control by non-thermal plasma actuator. J Phys D Appl Phys 40:605. doi:10.1088/0022-3727/40/3/S01

    Article  ADS  Google Scholar 

  3. Wang JJ, Choi K, Feng L, Jukes TN, Whalley RD (2013) Recent developments in DBD plasma flow control. Prog Aerosp Sci 62:52–78. doi:10.1016/j.paerosci.2013.05.003

    Article  Google Scholar 

  4. Grundmann S, Tropea C (2007) Experimental transition delay using glow-discharge plasma actuators. Exp Fluids 42:653–657

    Article  Google Scholar 

  5. Grundmann S, Tropea C (2008) Active cancellation of artificially introduced Tollmien–Schlichting waves using plasma actuators. Exp Fluids 44:795–806

    Article  Google Scholar 

  6. Wilkinson SP (2003) Investigation of an oscillating surface plasma for turbulent drag reduction. In: Proceedings of the 41st aerospace sciences meeting and exhibit, Reno, USA, 2003. Paper AIAA 2003-1023

  7. Touchard G (2008) Plasma actuators for aeronautical applications—state of art review. Int J Plasma Environ Sci Technol 2:1–25

    Google Scholar 

  8. Vernet J, Örlü R, Alfredsson PH (2015) Separation control by means of plasma actuation on a half cylinder approached by a turbulent boundary layer. J Wind Eng Ind Aerodyn 145:318–326

    Article  Google Scholar 

  9. Greenblatt D, Ben-Harav A, Mueller-Vahl H (2014) Dynamic stall control on a vertical-axis wind turbine using plasma actuators. AIAA J 52(2):456–462

    Article  ADS  Google Scholar 

  10. Borghi CA, Carraro MR, Cristofolini A, Neretti G (2008) Electrohydrodynamic interaction induced by a dielectric barrier discharge. J Appl Phys 103:063304. doi:10.1063/1.2888354

    Article  ADS  Google Scholar 

  11. Borghi CA, Cristofolini A, Grandi G, Neretti G, Seri P (2015) A plasma aerodynamic actuator supplied by a multilevel generator operating with different voltage waveforms. Plasma Sour Sci Technol. doi:10.1088/0963-0252/24/4/045018

    Google Scholar 

  12. Pons J, Moreau E, Touchard G (2004) Electrical and aerodynamic characteristics of atmospheric pressure barrier discharges in ambient air. In: Proceedings of ISNTPT, pp 370–410

  13. Opaits D, Likhanskii A, Neretti G, Zaidi S, Shneider M, Miles R, Macheret S (2008) Experimental investigation on dielectric barrier discharge plasma actuators driven by repetitive high-voltage nanosecond pulses with DC or low frequency sinusoidal bias. J Appl Phys 104:043304. doi:10.1063/1.2968251

    Article  ADS  Google Scholar 

  14. Opaits D, Neretti G, Zaidi S, Shneider M, Miles R, Likhanskii A, Macheret S (2008) DBD plasma actuator driven by a combination of low frequency bias voltage and nanosecond pulses. In: 46th AIAA aerospace sciences meeting and exhibit, Reno Nevada, paper AIAA-2008-1372

  15. Dawson R, Little J (2013) Characterization of nanosecond pulse driven dielectric barrier discharge plasma actuators for aerodynamic flow control. J Appl Phys 113:103302. doi:10.1063/1.4794507

    Article  ADS  Google Scholar 

  16. Thomas FO, Corke TC, Iqbal M, Kozlov A, Schatzman D (2009) Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control. AIAA J 47:2169–2178. doi:10.2514/1.41588

    Article  ADS  Google Scholar 

  17. Cristofolini A, Neretti G, Roveda F, Borghi CA (2012) Schlieren imaging in a dielectric barrier discharge actuator for airflow control. J Appl Phys 111:033302. doi:10.1063/1.3682488

    Article  ADS  Google Scholar 

  18. Cristofolini A, Borghi CA, Neretti G (2013) Charge distribution on the surface of a dielectric barrier discharge actuator for the fluid-dynamic control. J Appl Phys 113:143307. doi:10.1063/1.4799159

    Article  ADS  Google Scholar 

  19. Cristofolini A, Neretti G, Borghi CA (2013) Effect of the charge surface distribution on the flow field induced by a dielectric barrier discharge actuator. J Appl Phys 114:073303. doi:10.1063/1.4817378

    Article  ADS  Google Scholar 

  20. Dragonas FA, Neretti G, Sanjeevikumar P, Grandi G (2015) High-voltage high-frequency arbitrary waveform multilevel generator for DBD plasma actuators. IEEE Trans Ind Appl. doi:10.1109/TIA.2015.2409262

    Google Scholar 

  21. Nishida H, Abe T (2011) Validation study of numerical simulation of discharge plasma on DBD plasma actuator. In: 42nd AIAA plasmadynamics and lasers conference. doi: 10.2514/6.2011-3913

  22. Kotsonis M, Ghaemi S (2012) Performance improvement of plasma actuators using asymmetric high voltage waveforms. J Phys D Appl Phys 45(045204):12. doi:10.1088/0022-3727/45/4/045204

    Google Scholar 

  23. Neretti G, Cristofolini A, Borghi CA, Gurioli A, Pertile R (2012) Experimental results in DBD plasma actuators for air flow control. IEEE Trans Plasma Sci 40:1678–1687. doi:10.1109/TPS.2012.2191801

    Article  ADS  Google Scholar 

  24. Post ML, Corke TC (2004) Separation control on high angle of attack airfoil using plasma actuators. AIAA J 42:2177–2184

    Article  ADS  Google Scholar 

  25. He C, Corke TC, Patel MP (2009) Plasma flaps and slats: an application of weakly ionized plasma actuators. J Aircraft 46:864–873. doi:10.2514/1.38232

    Article  Google Scholar 

  26. Rizzetta DP, Visbal MR (2011) Numerical investigation of plasma-based control for low-Reynolds-number airfoil flows. AIAA J 49:411–425. doi:10.2514/1.J050755

    Article  ADS  MATH  Google Scholar 

  27. Bénard N, Moreau E (2014) Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. J Exp Fluids 55:1846. doi:10.1007/s00348-014-1846-x

    Article  Google Scholar 

  28. Bénard N, Jolibois J, Moreau E, Sosa R, Artana G, Touchard G (2008) Aerodynamic plasma actuators: a directional micro-jet device”, 20th symposium on plasma science for materials (SPSM-20). J Thin Solid Films 516:6660–6667. doi:10.1016/j.tsf.2007.11.039

    Article  ADS  Google Scholar 

  29. Amitay M, Glezer A (2002) Controlled transient of flow reattachment over stalled airfoils. Int J Heat Fluid Flow 23:690–699. doi:10.1016/S0142-727X(02)00165-0

    Article  Google Scholar 

  30. Kim SH, Hong W, Kim C (2007) Separation control mechanism of airfoil using synthetic jet. J Mech Sci Technol 21:1367–1375

    Article  Google Scholar 

  31. Santhanakrishnana A, Jacob J (2006) On plasma synthetic jet actuators. In: 44th AIAA aerospace science meeting and exhibit, reno, NV, paper AIAA 2006-317. doi 10.2514/6.2006-317

  32. Bénard N, Jolibois J, Touchard G, Moreau E (2008) A directional plasma-jet device generated by double DBD actuators—an active vortex generator for aerodynamic flow control. In: 4th flow control conference, Seattle, Washington, paper AIAA 2008-3763

  33. Bolitho M, Jacob J (2009) Active vortex generators using jet vectoring plasma actuators. SAE Int J Aerosp 1(1):610–618. doi:10.4271/2008-01-2234

    Article  Google Scholar 

  34. Matsuno T, Kawaguchi M, Fujita N, Yamada G, Kawazoe H (2012) Jet vectoring and enhancement of flow control performance of trielectrode plasma actuator utilizing sliding discharge. In: 6th flow control conference, paper AIAA 2012-3238

  35. Sosa R, Arnaud E, Memin E, Artana G (2009) Study of the flow induced by a sliding discharge. IEEE Trans Dielectr Electr Insul 16:305–311. doi:10.1109/TDEI.2009.4815157

    Article  Google Scholar 

  36. Seney SD Jr, Huffman RE, Bailey W, Lui D, Reeder ME, Stults J (2011) Experimental study on the induced velocity of a three potential sliding discharge DBD actuator. In: 42nd AIAA plasma dynamics and laser conference, paper AIAA 2011-3732

  37. Moreau E, Louste C, Touchard G (2008) Electric wind induced by sliding discharge in air at atmospheric pressure. J Electrostat 66:107–114. doi:10.1016/j.elstat.2007.08.011

    Article  Google Scholar 

  38. Neretti G, Seri P, Taglioli M, Shaw A, Iza F, Borghi CA (2017) Geometry optimization of linear and annular plasma synthetic jet actuators. J Phys D Appl Phys. doi:10.1088/1361-6463/50/1/015210

    Google Scholar 

  39. Neretti G, Cristofolini A, Borghi CA (2014) Experimental investigation on a vectorized aerodynamic dielectric barrier discharge plasma actuator array. J Appl Phys 115:163304. doi:10.1063/1.4873896

    Article  ADS  Google Scholar 

  40. Little J, Takashima K, Nishihara M, Adamovich I, Samimy M (2012) Separation control with nanosecond-pulse-driven dielectric barrier discharge plasma actuators. AIAA J 50(2):350–365

    Article  ADS  Google Scholar 

  41. Post ML, Corke TC (2004) Separation control using plasma actuators–stationary and oscillating airfoils. In: AIAA paper 2004-0841

  42. Thomas FO, Kozlov A, Corke TC (2008) Plasma actuators for cylinder flow control and noise reduction. AIAA J 46(8):1921–1931

    Article  ADS  Google Scholar 

  43. Seifert A (2007) Closed-loop active flow control systems: actuators. In King R (ed) Active flow control: papers contributed to the conference “active flow control 2006”‘, Berlin, Germany, September 27–29. Springer, Berlin

  44. Greenblatt D, Wygnanski IJ, Rumsey CL (2010) Aerodynamic flow control. In: John Wiley and Sons (eds) Encyclopedia of aerospace engineering. doi: 10.1002/9780470686652.eae019

  45. Schlichting H, Kestin J (1960) Boundary layer theory, McGraw-Hill series in mechanical engineering. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Talamelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borghi, C.A., Cristofolini, A., Neretti, G. et al. Duty cycle and directional jet effects of a plasma actuator on the flow control around a NACA0015 airfoil. Meccanica 52, 3661–3674 (2017). https://doi.org/10.1007/s11012-017-0692-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0692-3

Keywords

Navigation