Skip to main content
Log in

Simulated hail impacts on flexible photovoltaic laminates: testing and modelling

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The problem of simulated low-velocity hail impacts on flexible photovoltaic (PV) modules resting on a substrate with variable stiffness is investigated. For this type of PV module it is shown that the prescriptions of the IEC 61215 International Standard for quality control used for rigid (glass-covered) PV modules should be augmented by taking into account their real mounting condition and the stiffness of the substrate in the simulated hail impact tests. Moreover, electroluminescence inspection of the crack pattern should be made in addition to electric power output measurements. An implicit finite element simulation of the contact problem in dynamics is also proposed, with two different degrees of accuracy, to interpret the experimentally observed extension of cracking. Results pinpoint the important role of stress wave propagation and reflection in the case of soft substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Meyer EL, van Dyk EE (2004) Assessing the reliability and degradation of photovoltaic module performance parameters. IEEE Trans Reliab 53:83–92

    Article  Google Scholar 

  2. Paggi M, Kajari-Schröder S, Eitner U (2011) Thermomechanical deformations in photovoltaic laminates. J Strain Anal Eng Des 46:772–782

    Article  Google Scholar 

  3. Paggi M, Berardone I, Infuso A, Corrado M (2014) Fatigue degradation and electric recovery in silicon solar cells embedded in photovoltaic modules. Sci Rep 4:4506

    ADS  Google Scholar 

  4. Paggi M, Corrado M, Rodriguez MA (2013) A multi-physics and multi-scale numerical approach to microcracking and power-loss in photovoltaic modules. Compos Struct 95:630–638

    Article  Google Scholar 

  5. Paggi M, Berardone I, Corrado M (2016) A global/local approach for the prediction of the electric response of cracked solar cells in photovoltaic modules under the action of mechanical loads. Eng Fract Mech. doi:10.1016/j.engfracmech.2016.01.018

    Google Scholar 

  6. Lenarda P, Paggi M (2016) A geometrical multi-scale numerical method for coupled hygro-thermo-mechanical problems in photovoltaic laminates. Comput Mech 57:947–963

    Article  MathSciNet  MATH  Google Scholar 

  7. Moore D, Wilson A, Ross R (1978) Simulated hail impact testing of photovoltaic solar panels. In: Proceedings of 24th annual technical meeting, Institute of Environmental Sciences, Ft. Worth, TX, 18–20 April 1978, pp 419–430

  8. Sapora A, Paggi M (2014) A coupled cohesive zone model for transient analysis of thermoelastic interface debonding. Comput Mech 53:845–857

    Article  MathSciNet  MATH  Google Scholar 

  9. Berardone I, Corrado M, Paggi M (2014) A generalized electric model for mono and polycrystalline silicon in the presence of cracks and random defects. Energy Procedia 55:22–29

    Article  Google Scholar 

  10. International Standards IEC 61215:2006 (2006) Crystalline silicon terrestrial photovoltaic (PV) modules—design qualification and type approval

  11. Wriggers P, Van Vu T, Stein E (1990) Finite element formulation of large deformation impact–contact problems with friction. Comput Struct 37:319–331

    Article  MATH  Google Scholar 

  12. Laursen TA (2002) Computational contact and impact mechanics. Springer, Berlin

    MATH  Google Scholar 

  13. Wriggers P (2006) Computational contact mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  14. Yu C, Ortiz M, Rosakis AJ (2003) 3D modelling of impact failure in sandwich structures. Eur Struct Integr Soc 32:527–537

    Article  Google Scholar 

  15. Zavarise G, Bacchetto A (2006) Nail shooting on a steel support. In: Prez-Aparicio JL (ed) Practical applications using computational contact mechanics. The TCN series on simulation based engineering and sciences, vol 2. Consorzio TCN, Trento, pp 143–196

    Google Scholar 

  16. Richardson MOW, Wisheart MJ (1996) Review of low-velocity impact properties of composite materials. Compos A 27A:1123–1131

    Article  Google Scholar 

  17. Xu LR, Rosakis AJ (2002) Impact failure characteristics in sandwich structures. Part I: basic failure mode selection. Int J Solids Struct 39:4215–4235

    Article  Google Scholar 

  18. Xu LR, Rosakis AJ (2002) Impact failure characteristics in sandwich structures. Part II: effects of impact speed and interfacial strength. Int J Solids Struct 39:4237–4248

    Article  Google Scholar 

  19. Hazizan MA, Cantwell WJ (2002) The low velocity impact response of foam-based sandwich structures. Compos B 33:193–204

    Article  Google Scholar 

  20. Ivañez I, Sanchez-Saez S (2013) Numerical modelling of the low-velocity impact response of composite sandwich beams with honeycomb core. Compos Struct 106:716–723

    Article  Google Scholar 

  21. Kim H, Kedward KT (2000) Modeling hail ice impacts and predicting impact damage initiation in composite structures. AIAA J 38:1278–1288

    Article  ADS  Google Scholar 

  22. Kim H, Welch DA, Kedward KT (2003) Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels. Compos A 34:25–41

    Article  Google Scholar 

  23. Anghileri M, Castelletti LML, Invernizzi F, Mascheroni M (2005) A survey of numerical models for hail impact analysis using explicit finite element codes. Int J Impact Eng 31:929–944

    Article  Google Scholar 

  24. Olsson R, Juntikka R, Asp LE (2013) High velocity hail impact on composite laminates—modelling and testing. In: Abrate S, Castani B, Rajapakse YDS (eds) Dynamic failure of composite and sandwich structures. Springer, Berlin, pp 393–426

    Chapter  Google Scholar 

  25. Nelva R, Morra L (2009) L’effetto della grandine su cupole e lucernari. Zenital, Monza

  26. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  27. Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  28. Paggi M, Sapora A (2015) An accurate thermoviscoelastic rheological model for Ethylene Vinyl Acetate based on fractional calculus. Int J Photoenergy 2015:252740

  29. Ojo SO, Paggi M (2016) A thermo-visco-elastic shear-lag model for the prediction of residual stresses in photovoltaic modules after lamination. Compos Struct 136:481–492

    Article  Google Scholar 

  30. Abrate S (2001) Modeling of impacts on composite structures. Compos Struct 51:129–138

    Article  Google Scholar 

Download references

Acknowledgments

This research has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement No. 306622 (ERC Starting Grant “Multi-field and multi-scale Computational Approach to Design and Durability of PhotoVoltaic Modules”—CA2PVM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Corrado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrado, M., Infuso, A. & Paggi, M. Simulated hail impacts on flexible photovoltaic laminates: testing and modelling. Meccanica 52, 1425–1439 (2017). https://doi.org/10.1007/s11012-016-0483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0483-2

Keywords

Navigation