Skip to main content
Log in

Asymptotic interface models in magneto-electro-thermo-elastic composites

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We study the quasi-static behavior of a magneto-electro-thermo-elastic composite constituted by a thin magneto-electro-thermo-elastic plate-like layer inserted between two generic magneto-electro-thermo-elastic bodies by means of an asymptotic analysis. After defining a small dimensionless parameter \(\varepsilon\), which will tend to zero, we characterize two different limit models and their associated limit problems, the so-called weak and strong magneto-electro-thermo-elastic interface models, respectively. Moreover, we identify the non classical magneto-electro-thermo-elastic transmission conditions at the interface between the two three-dimensional bodies and we prove a weak convergence result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Benveniste Y (2006) An \(O(h^N)\) interface model for a three-dimensional curved interphase in conduction phenomena. Proc R Soc A 462:1619–1627

    Article  MathSciNet  MATH  Google Scholar 

  2. Benveniste Y (2012) Two models of three-dimensional thin interphases with variable conductivity and their fulfillment of the reciprocal theorem. J Mech Phys Solids 60(10):1740–1752

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Benveniste Y (2009) An interface model for a three-dimensional curved thin piezoelectric interphase between two piezoelectric media. Math Mech Solids 14:102–122

    Article  MathSciNet  MATH  Google Scholar 

  4. Bessoud A-L, Krasucki F, Michaille G (2009) Multi-materials with strong interface: variational modelings. Asymptot Anal 1:1–19

    MathSciNet  MATH  Google Scholar 

  5. Bessoud A-L, Krasucki F, Serpilli M (2011) Asymptotic analysis of shell-like inclusions with high rigidity. J Elast 103:153–172

    Article  MathSciNet  MATH  Google Scholar 

  6. Bessoud A-L, Krasucki F, Serpilli M (2008) Plate-like and shell-like inclusions with high rigidity. C R Acad Sci Paris Ser I(346):697–702

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonaldi F, Geymonat G, Krasucki F (2015) Modeling of smart materials with thermal effects: dynamic and quasi-static evolution. Math Models Methods Appl Sci 25(14):2633–2667

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonaldi F, Geymonat G, Krasucki F, Serpilli M (2015) An asymptotic plate model for magneto-electro-thermo-elastic sensors and actuators. Math Mech Solids. doi:10.1177/1081286515612885

  9. Chatzigeorgiou G, Javili A (2014) Surface electrostatics: theory and computations. Proc R Soc A 470:20130628

    Article  ADS  Google Scholar 

  10. Ciarlet PG (1997) Mathematical elasticity, vol. II: theory of plates. Elsevier Science, Amsterdam

    MATH  Google Scholar 

  11. Fernandes A, Pouget J (2002) An accurate modelling of piezoelectric multi-layer plates. Eur J Mech A Solids 2:629–651

    Article  MathSciNet  MATH  Google Scholar 

  12. Geis W, Mishuris G, Sändig AM (2004) Asymptotic models for piezoelectric stack actuators with thin metal inclusions. Berichte aus dem Institut für Angewandte Analysis und Numerische Simulation 2004/001. Preprint IANS, Univ. Stuttgart, Germany

  13. Geymonat G, Hendili S, Krasucki F, Serpilli M, Vidrascu M (2014) Asymptotic expansions and domain decomposition in domain decomposition methods XXI (Lecture notes in computational science and engineering), vol 98. Springer

  14. Geymonat G, Krasucki F, Marini D, Vidrascu M (1998) A domain decomposition method for a bonded structure. Math Model Methods Appl Sci 8:1387–1402

    Article  MathSciNet  MATH  Google Scholar 

  15. Geymonat G, Krasucki F, Lenci S (1999) Mathematical analysis of a bonded joint with a soft thin adhesive. Math Mech Solids 4:201–225

    Article  MathSciNet  MATH  Google Scholar 

  16. Javili A, Kaessmair S, Steinmann P (2014) General imperfect interfaces. Comput Methods Appl Mech Eng 275:76–97

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Krasucki F, Münch A, Ousset Y (2004) Mathematical analysis of nonlinear bonded joint models. Math Models Methods Appl Sci 14:1–22

    Article  MathSciNet  MATH  Google Scholar 

  18. Lebon F, Rizzoni R (2010) Asymptotic analysis of a thin interface: the case involving similar rigidity. Int J Eng Sci 48:473–486

    Article  MathSciNet  MATH  Google Scholar 

  19. Lebon F, Rizzoni R (2011) Asymptotic behavior of a hard thin linear interphase: an energy approach. Int J Solids Struct 48:441–449

    Article  MATH  Google Scholar 

  20. Licht C, Michaille G (1997) A modelling of elastic adhesive bonded joints. Adv Math Sci Appl 7(2):711–740

    MathSciNet  MATH  Google Scholar 

  21. Miara B, Suàrez JS (2013) Asymptotic pyroelectricity and pyroelasticity in thermopiezoelectric plates. Asymptot Anal 81:211–250

    MathSciNet  MATH  Google Scholar 

  22. Raoult A, Sène A (2003) Modelling of piezoelectric plates including magnetic effects. Asymptot Anal 34:1–40

    MathSciNet  MATH  Google Scholar 

  23. Sène A (2001) Modelling of piezoelectric static thin plates. Asymptot Anal 25:1–20

    MathSciNet  MATH  Google Scholar 

  24. Serpilli M (2014) An asymptotic model of a multimaterial with a thin piezoeletric interphase. C R Mech 342:258–262

    Article  MATH  Google Scholar 

  25. Serpilli M (2014) Asymptotic analysis of a multimaterial with a thin piezoelectric interphase. Meccanica 49:1641–1652

    Article  MathSciNet  MATH  Google Scholar 

  26. Serpilli M (2015) Mathematical modeling of weak and strong piezoelectric interfaces. J Elast 121(2):235–254

    Article  MathSciNet  MATH  Google Scholar 

  27. Weller T, Licht C (2010) Asymptotic modeling of thin piezoelectric plates. Ann Solid Struct Mech 1:173–188

    Article  MATH  Google Scholar 

  28. Weller T, Licht C (2010) Mathematical modeling of piezomagnetoelectric thin plates. Eur J Mech A Solids 29:928–937

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Serpilli.

Appendix

Appendix

In the sequel we define the reduced constitutive coefficients characterizing the strong magneto-electro-thermo-elastic interface model. We recall that \((d_{ij}):=(C_{i3j3})^{-1}\).

$$\begin{aligned}&{C}'_{i\beta j\alpha }:={C}^m_{i\beta j\alpha }-d_{pq}{C}^m_{p3 j\alpha }{C}^m_{q3 i\beta }, P'_{i\alpha j}=P^m_{i\alpha j}-d_{pq}P^m_{ip3}C^m_{j3q\alpha }, \\&R'_{i\alpha j}=R^m_{i\alpha j}-d_{pq}R^m_{ip3}C^m_{j3q\alpha }, {\beta }'_{j\alpha }:= {\beta }^m_{j\alpha } -d_{pq}{C}^m_{p3 j\alpha }{\beta }^m_{ q 3}\\&X'_{ij}:=X^m_{ij}+d_{pq}P^m_{i p3}P^m_{j q3}, M'_{ij}:=M^m_{ij}+d_{pq}R^m_{i p3}R^m_{j q3}, \\&{\alpha }'_{ij} :={\alpha }_{ij}^m +d_{pq}P_{i p3}R_{j q3}, \alpha ''_{\alpha 3}:=\alpha ^m_{\alpha 3}+d_{pq}R^m_{3p3}P^m_{\alpha q3},\\&p'_i:= p_i^m+d_{pq}P^m_{ip3}\beta _{q3}^m, m'_i:= m_i^m+d_{pq}R^m_{ip3}\beta _{q3}^m,\\&{c}'_{v}:=c_v^m+d_{pq}\beta _{p3}^m\beta _{q3}^m, k':=\frac{1}{X'_{33}M'_{33}-(\alpha '_{33})^2},\\&{\tilde{C}}^m_{i\beta j\alpha }:={C}'_{i\beta j\alpha }+k' (M'_{33}P'_{3\beta i}-\alpha '_{33}R'_{3\beta i})P'_{3 \alpha j}+k' (X'_{33}R'_{3\beta i}-\alpha '_{33}P'_{3\beta i})R'_{3 \alpha j},\\&{\tilde{P}}^m_{\beta \alpha j}:={P}'_{\beta \alpha j}-k' (M'_{33}X'_{\beta 3}-\alpha '_{33}\alpha ''_{\beta 3})P'_{3 \alpha j}-k'(X'_{33}\alpha ''_{\beta 3}-\alpha '_{33}X_{\beta 3})R'_{3 \alpha j},\\&{\tilde{R}}^m_{\beta \alpha j}:={R}'_{\beta \alpha j}-k'(M'_{33}\alpha '_{\beta 3}-\alpha '_{33}M'_{\beta 3})P'_{3 \alpha j}-k'(X'_{33}M'_{\beta 3}-\alpha '_{33}\alpha '_{\beta 3})R'_{3 \alpha j},\\&{\tilde{\beta }}^m_{j\alpha }:= {\beta }'_{j\alpha }-k' (M'_{33}p'_{3}-\alpha '_{33}m'_{3})P'_{3 \alpha j}-k'(X'_{33} m'_3-\alpha '_{33}p'_3)R'_{3 \alpha j},\\&{\tilde{X}}^m_{\alpha \beta }:= {X}'_{\alpha \beta }-k' (M'_{33}X'_{\beta 3}-\alpha '_{33}\alpha ''_{\beta 3})X'_{\alpha 3} - k'(X'_{33}\alpha ''_{\beta 3}-\alpha '_{33}X'_{\beta 3})\alpha ''_{\alpha 3}\\&{\tilde{\alpha }}^m_{\alpha \beta }:= {\alpha }'_{\alpha \beta }-k' (M'_{33}\alpha '_{\beta 3}-\alpha '_{33}M'_{\beta 3})X'_{\alpha 3}-k' (X'_{33}M'_{\beta 3}-\alpha '_{33}\alpha '_{\beta 3})\alpha ''_{\alpha 3},\\&{\tilde{M}}^m_{\alpha \beta }:= {M}'_{\alpha \beta }-k' (M'_{33}\alpha '_{\beta 3}-\alpha '_{33}M'_{\beta 3})\alpha '_{\alpha 3} - k'(X'_{33}M'_{\beta 3}-\alpha '_{33}\alpha '_{\beta 3})M'_{\alpha 3},\\&{\tilde{p}}^m_{\alpha }:= {p}'_{\alpha } -k'(M'_{33} p'_3-\alpha '_{33}m'_3)X'_{\alpha 3}-k'(X'_{33} m'_3-\alpha '_{33}p'_3)\alpha ''_{\alpha 3},\\&{\tilde{m}}^m_{\alpha }:= {m}'_{\alpha } -k'(M'_{33} p'_3-\alpha '_{33}m'_3)\alpha '_{\alpha 3}-k'(X'_{33} m'_3-\alpha '_{33}p'_3)M'_{\alpha 3},\\&{\tilde{c}}^m_{v}:= {c}'_{v} -k'(M'_{33} p'_3-\alpha '_{33}m'_3)p'_{3}-k'(X'_{33} m'_3-\alpha '_{33}p'_3)m'_{3},\\&{\tilde{K}}^m_{\alpha \beta } := {K}^m_{\alpha \beta }+\frac{K^m_{\alpha 3}K^m_{\beta 3}}{K^m_{33}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serpilli, M. Asymptotic interface models in magneto-electro-thermo-elastic composites. Meccanica 52, 1407–1424 (2017). https://doi.org/10.1007/s11012-016-0481-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0481-4

Keywords

Mathematics Subject Classification

Navigation