Skip to main content
Log in

Effect of reinforcement, gravity and liquid loading on Rayleigh-type wave propagation

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the present time, self-reinforced materials are the basic requirement for civil engineering construction. These constructions encounter surface wave propagation during earthquakes and similar disturbances. Therefore, the study of surface wave propagation in such material is of great significance. The present paper, in the light of practical situation like dams, canals etc. aims to study the effect of gravity on the propagation of Rayleigh-type surface wave in a self-reinforced semi-infinite medium bounded and loaded by an inviscid liquid layer. Secular equation for the propagation of Rayleigh-type wave has been derived in closed form. The effect of gravity, reinforcement and liquid loading on phase velocity of Rayleigh-type wave has been distinctly observed. Numerical computation has been carried out and graphical illustration is provided for analysis of the presented study. Moreover, the effect of reinforced semi-infinite medium is compared to the effect of reinforced free semi-infinite medium on the phase velocity of Rayleigh-type surface wave to unravel the reinforcement effect. The effect of presence and absence of liquid loading on self-reinforced semi-infinite medium for Rayleigh-type wave propagation is also analysed and depicted by means of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rayleigh L (1885) On waves propagated along the plane surface of an elastic solid. Proc Lond Math Soc 17:4

    Article  MathSciNet  MATH  Google Scholar 

  2. Belfield AJ, Roger TG, Spencer AJM (1986) Stress in elastic plates reinforced by fibres lying in concentric circles. J Mech Phys Solids 31:25

    Article  ADS  MATH  Google Scholar 

  3. Sengupta PR, Nath S (2001) Surface waves in fibre-reinforced anisotropic elastic media. Sãdhanã 26:363–370

    Google Scholar 

  4. Chattopadhyay A, Venkateswarlu RLK, Saha S (2002) Reflection of quasi-P and quasi-SV waves at the free and rigid boundaries of a fibre-reinforced medium. Sãdhanã 27:613–630

    MATH  Google Scholar 

  5. Chattopadhyay A, Gupta S, Sahu SA, Singh AK (2013) Dispersion of horizontally polarized shear waves in an irregular non-homogeneous self-reinforced crustal layer over a semi-infinite self-reinforced medium. J Vib Control 19:109–119

    Article  MathSciNet  Google Scholar 

  6. Baljeet S (2005) Wave propagation in thermally conducting linear fibre-reinforced composite materials. Arch Appl Mech 75:513–520

    MATH  Google Scholar 

  7. Baljeet S (2007) Wave propagation in an incompressible transversely isotropic fibre-reinforced elastic media. Arc Appl Mech 77:253–258

    Article  MATH  Google Scholar 

  8. Sapan KS, Ranjan C (2011) Surface wave propagation in fiber-reinforced anisotropic elastic layer between liquid saturated porous half space and uniform liquid layer. Acta Geophys 59:470–482

    ADS  Google Scholar 

  9. Sapan KS, Ranjan C (2013) Love waves in the fiber-reinforced layer over a gravitating porous half-space. Acta Geophys 61:1170–1183

    ADS  Google Scholar 

  10. Bromwich TJ (1898) On the influence of gravity on elastic waves, and in particular, on the vibrations of an elastic glob. Proc Lond Math Soc 30:98–120

    Article  MathSciNet  Google Scholar 

  11. Love AEH (1965) Some problems of geodynamics. Cambridge University Press, London

    Google Scholar 

  12. De SK, Sengupta PR (1974) Influence of gravity on wave propagation in an elastic layer. J Acoust Soc Am 55:919–921

    Article  ADS  Google Scholar 

  13. Biot MA (1965) Mechanics of Incremental Deformations. J. Willey

  14. Wu J, Zhu Z (1992) The propagation of lamb waves in a plate bordered with layers of a liquid. J Acoust Soc Am 91:861–867

    Article  ADS  Google Scholar 

  15. Sharma JN, Pathania V (2005) Propagation of leaky surface waves in thermoelastic solids due to inviscid fluid loadings. J Thermal Stresses 28:485–519

    Article  Google Scholar 

  16. Sharma JN, Kumar S (2009) Lamb waves in micropolar thermoelastic solid plates immersed in liquid with varying temperature. Meccanica 44:305–319

    Article  MathSciNet  MATH  Google Scholar 

  17. Sharma V, Kumar S (2014) Velocity dispersion in an elastic plate with microstructure: effects of characteristic length in a couple stress model. Meccanica 49:1083–1090

    Article  MathSciNet  MATH  Google Scholar 

  18. Chattopadhyay A, Kumari Pato, Sharma VK (2014) Reflection and transmission of a three-dimensional plane qP-wave through a layered fluid medium between two distinct triclinic half-spaces. Int J Geomech 14:182–190

    Article  Google Scholar 

  19. Ewing WM, Jardetzky WS (1957) Elastic waves in layered media. McGraw Hill, New York

    MATH  Google Scholar 

  20. Sharma JN, Kumar S, Sharma YD (2008) Propagation of rayleigh surface waves in microstretch thermoelastic continua under inviscid fluid loadings. J Therm Stresses 31:18–39

    Article  Google Scholar 

  21. Markham MF (1970) Measurements of elastic constants of fibre composites by ultrasonics. Composites 1:145–149

    Article  Google Scholar 

  22. Gubbins D (1990) Seismology and plate tectonics. Cambridge University Press, Cambridge 170

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Kumar Sharma.

Appendix

Appendix

$$ \beta_{1}^{2} = \frac{{\mu_{L} }}{\rho }, $$
$$ \begin{aligned} \xi_{1} & = \lambda_{l} (1 - T^{2} )(1 - e^{ - 2TkH} ),\quad \xi_{2} = i(\lambda + \alpha ) - \eta_{1} s_{1} (\lambda + 2\mu_{T} ), \\ \xi_{3} & = i\left( {\lambda + \alpha } \right) - \eta_{2} s_{2} (\lambda + 2\mu_{T} ),\quad \xi_{4} = (\eta_{1} i - s_{1} )\mu_{L} ,\quad \xi_{5} = (\eta_{2} i - s_{2} )\mu_{L} , \\ \end{aligned} $$
$$ N_{1}^{{\prime }} = \left( {\rho V^{2} - P_{1} } \right)\left( {\rho V^{2} - \mu_{L} } \right), $$
$$ s_{j}^{{{\prime }2}} = \frac{{ - M_{1} \pm \sqrt {M_{1}^{2} - 4\mu_{L} P_{2} N_{1}^{{\prime }} } }}{{2\mu_{L} P_{2} }},\quad (j = 1,2) $$
$$ \eta_{j}^{\prime } = \frac{{s_{j}^{\prime 2} \mu_{L} + \rho V^{2} - P_{1} }}{{i\left( {s_{j}^{\prime } P_{2} } \right)}},\quad (j = 1,2) $$
$$ \begin{aligned} \xi_{1}^{{\prime }} & = \lambda_{l} (1 - T^{2} )(1 - e^{ - 2TkH} ),\quad \xi_{2}^{{\prime }} = i(\lambda + \alpha ) - \eta_{2}^{{\prime }} s_{2}^{{\prime }} (\lambda + 2\mu_{T} ),\quad \xi_{3}^{{\prime }} = i(\lambda + \alpha ) - \eta_{1}^{{\prime }} s_{1}^{{\prime }} (\lambda + 2\mu_{T} ), \\ \xi_{4}^{{\prime }} & = \left( {\eta_{1}^{{\prime }} i - s_{1}^{{\prime }} } \right)\mu_{L} ,\quad \xi_{5}^{{\prime }} = \left( {\eta_{2}^{{\prime }} i - s_{2}^{{\prime }} } \right)\mu_{L} , \\ \end{aligned} $$
$$ P_{1}^{{\prime }} = (\lambda + 2\mu ),\quad P_{2}^{{\prime }} = (\lambda + \mu ), $$
$$ M_{2} = \mu (\rho V^{2} - \mu ) + P_{1}^{{\prime }} \left( {\rho V^{2} - P_{1}^{{\prime }} } \right) - P_{2}^{{{\prime }2}} ,\quad N_{2} = \left( {\rho V^{2} - P_{1}^{{\prime }} } \right)(\rho V^{2} - \mu ) + \frac{{\rho^{2} g^{2} }}{{k^{2} }}, $$
$$ s_{j}^{2} = \frac{{ - M_{2} \pm \sqrt {M_{2}^{2} - 4\mu P_{1}^{{\prime }} N_{2} } }}{{2\mu P_{1}^{'} }},\quad (j = 3,4) $$
$$ \eta_{j} = \frac{{s_{j}^{2} \mu + \rho V^{2} - P_{1}^{{\prime }} }}{{i\left( {s_{j} P_{2}^{{\prime }} - \frac{\rho g}{k}} \right)}},\quad (j = 3,4), $$
$$ \begin{aligned} \chi_{1} & = \lambda_{l} (1 - T^{2} )(1 - e^{ - 2TkH} ),\quad \chi_{2} = i(\lambda + \alpha ) - \eta_{3} s_{3} (\lambda + 2\mu_{T} ), \\ \chi_{3} & = i(\lambda + \alpha ) - \eta_{4} s_{4} (\lambda + 2\mu_{T} ),\quad \chi_{4} = (\eta_{3} i - s_{3} )\mu_{L} ,\quad \chi_{5} = (\eta_{4} i - s_{4} )\mu_{L} , \\ \end{aligned} $$
$$ N_{2}^{{\prime }} = \left( {\rho V^{2} - P_{1}^{{\prime }} } \right)\left( {\rho V^{2} - \mu_{L} } \right), $$
$$ s_{j}^{{{\prime }2}} = \frac{{ - M_{2} \pm \sqrt {M_{2}^{2} - 4\mu P_{2}^{{\prime }} N_{2}^{{\prime }} } }}{{2\mu P_{2}^{{\prime }} }},\quad (j = 3,4) $$
$$ \eta_{j}^{\prime } = \frac{{s_{j}^{\prime 2} \mu + \rho V^{2} - P_{1}^{\prime } }}{{i\left( {s_{j}^{\prime } P_{2}^{\prime } } \right)}},\quad (j = 3,4) $$
$$ \begin{aligned} \chi_{1}^{{\prime }} & = \lambda_{l} (1 - T^{2} )(1 - e^{ - 2TkH} ),\quad \chi_{2}^{{\prime }} = i(\lambda ) - \eta_{3}^{{\prime }} s_{3}^{{\prime }} (\lambda + 2\mu ), \\ \chi_{3}^{{\prime }} & = i(\lambda ) - \eta_{4}^{{\prime }} s_{4}^{{\prime }} (\lambda + 2\mu ),\quad \chi_{4}^{{\prime }} = \left( {\eta_{3}^{{\prime }} i - s_{3}^{{\prime }} } \right)\mu ,\quad \chi_{5}^{{\prime }} = \left( {\eta_{4}^{{\prime }} i - s_{4}^{{\prime }} } \right)\mu , \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, T., Sharma, S.K. & Singh, A.K. Effect of reinforcement, gravity and liquid loading on Rayleigh-type wave propagation. Meccanica 51, 2449–2458 (2016). https://doi.org/10.1007/s11012-016-0379-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0379-1

Keywords

Navigation