Skip to main content
Log in

On the stability of gradually varying mud-flows in open channels

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In the present paper the stability of gradually varying mud-flows in wide open channel is analyzed. The governing equations derive from a Saint–Venant-like approach with a Herschel & Bulkley model for the fluid rheology. In order to define the stability of a given initial accelerating or decelerating flow depth profile, the spatial evolution of a wavefront is analyzed. A stability criterion based on the linearized flow model is introduced, showing that the streamwise non-uniformity of the flow substantially influences the stability limits. A positive flow depth slope induces a stabilization while a negative one determines a destabilizing effect. The dependency of the linear stability on the values of rheological parameters is deeply discussed. A non-linear analysis of the wavefront propagation, along with the full non-linear solution of the problem, has been carried out to confirm the role played by the initial profile on the flow stability. The results of the presented study may be useful for engineering applications in order to prevent or to inhibit roll-waves formation in subcritical flows of a Herschel & Bulkley fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Li J, Yuan J, Bi C, Luo D (1983) The main features of the mudflow in Jiang-Jia Ravine. Z. fur Geomorphol 21:325–341

    Google Scholar 

  2. Iverson RM (2003) The debris-flow rheology myth. International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings 1:303–314

  3. Balmforth NJ, Frigaard IA, Ovarlez G (2014) Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu Rev Fluid Mech 46:121–146

    Article  ADS  MathSciNet  Google Scholar 

  4. Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296

    Article  ADS  Google Scholar 

  5. Takahashi T (1991) Debris flow. IAHR Monograph Series, Balkema, Rotterdam

    Google Scholar 

  6. Brock RR (1969) Development of roll-waves trains in open channels. J Hydraul Div 95(HY4):1401–1427

    Google Scholar 

  7. Ponce VM, Simon DB (1977) Shallow water propagation in open channel flow. J Hydraul Div 103:1461–1476

    Google Scholar 

  8. Berlamont JF, Vanderstappen N (1981) Unstable turbulent flow in open channels. J Hydraul Div 107(HY4):427–449

    Google Scholar 

  9. Balmforth NJ, Mandre S (2004) Dynamics of roll waves. J Fluid Mech 514:1–33

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Liggett JA (1975) Stability. In: Unsteady flow in open channel. Vol. 1. K. Mahmood & V. Yevjevich, Water Resource Publication, Fort Collins

  11. Di Cristo C, Vacca A (2005) On the convective nature of roll waves instability. J Appl Math 3:259–271

    Article  Google Scholar 

  12. Ridolfi L, Porporato A, Revelli R (2006) Green’s function of the linearized de Saint–Venant equations. J Eng Mech 132(2):125–132

    Article  Google Scholar 

  13. Di Cristo C, Iervolino M, Vacca A, Zanuttigh B (2008) Minimum channel length for roll-waves generation. J Hydraul Res 46(1):73–79

    Article  Google Scholar 

  14. Di Cristo C, Iervolino M, Vacca A, Zanuttigh B (2010) Influence of relative roughness and Reynolds number on the roll waves spatial evolution. J Hydraul Eng 136(1):24–33

    Article  Google Scholar 

  15. Di Cristo C, Iervolino M, Vacca A (2012) Green’s function of the linearized Saint-Venant equations in laminar and turbulent flows. Acta Geophys 60(1):173–190

    Article  ADS  Google Scholar 

  16. Parker G (1975) Sediment inertia as cause of river antidunes. J Hydraul Div 101(HY2):211–221

    Google Scholar 

  17. Seminara G (1998) Stability and morphodynamics. Meccanica 33(1):59–99

    Article  MATH  MathSciNet  Google Scholar 

  18. Di Cristo C, Iervolino M, Vacca A (2006) Linear stability analysis of a 1-D model with dynamical description of bed-load transport. J Hydraul Res 44(4):480–487

    Article  Google Scholar 

  19. Vesipa R, Camporeale C, Ridolfi L (2012) A shallow-water theory of river bedforms supercritical conditions. Phys Fluids 24(9):094104

    Article  ADS  Google Scholar 

  20. Dracos TA, Glenne B (1967) Stability criteria for open-channel flow. J Hydraul Div 93(HY6):79–101

    Google Scholar 

  21. Kranenburg C (1990) On the stability of gradually varying flow in wide open channels. J Hydraul Res 28(5):621–628

    Article  Google Scholar 

  22. Huu Chung D (1995) On the stability of gradually varying flow in an open channel with a mobile bed. J Hydraul Res 33(1):77–86

    Article  Google Scholar 

  23. Bohorquez P (2010) Competition between kinematic and dynamic waves in floods on steep slopes. J Fluid Mech 645:375–409

    Article  ADS  MATH  Google Scholar 

  24. Bohorquez P, Rentschler M (2011) Hydrodynamic instabilities in well-balanced finite volume schemes for frictional shallow water equations. The kinematic wave case. J Sci Comput 48(1–3):3–15

    Article  MATH  MathSciNet  Google Scholar 

  25. Huang X, Garcia MH (1998) A Herschel-Bulkley model for mud flow down a slope. J Fluid Mech 374:305–333

    Article  ADS  MATH  Google Scholar 

  26. Hogg AJ, Pritchard D (2004) The effect of hydraulic resistance on dam-break and other shallow inertial flows. J Fluid Mech 501:179–212

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Ancey C (2007) Plasticity and geophysical flows: A review. J Non Newton Fluid Mech 142:4–35

    Article  MATH  Google Scholar 

  28. Chambon G, Ghemmour A, Laigle D (2009) Gravity-driven surges of a viscoplastic fluid: An experimental study. J Non Newton Fluid Mech 158:54–62

    Article  Google Scholar 

  29. Longo S (2011) Roll waves on a shallow layer of a dilatant fluid. Eur J Mech B/Fluids 30:57–67

    Article  MATH  MathSciNet  Google Scholar 

  30. Forterre Y, Pouliquen O (2003) Long-surface wave instability in dense granular flows. J Fluid Mech 486:21–50

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Ruyer-Quil C, Manneville P (1998) Modeling film flows down inclined plane. Eur Phys J B 6:277–298

    Article  ADS  Google Scholar 

  32. Ruyer-Quil C, Manneville P (2000) Improved modeling of flows down inclined plane. Eur Phys J B 15:357–369

    Article  ADS  Google Scholar 

  33. Fernandez-Nieto ED, Noble P, Vila JP (2010) Shallow water equations for non-Newtonian fluids. J Non Newton Fluid Mech 165:712–732

    Article  MATH  Google Scholar 

  34. Bouchut F, Boyaval S (2013) A new model for shallow viscoelastic fluids. Math Model Methods Appl Sci 23:1479–1526

    Article  MATH  MathSciNet  Google Scholar 

  35. Noble P, Vila JP (2013) Thin power-law film flow down an inclined plane: consistent shallow-water models and stability under large-scale perturbations. J Fluid Mech 735:29–60

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Bouchut F, Boyaval S (2014) Unified formal reduction for fluid models of free-surface shallow gravity-flows, arXiv: 1306.3464

  37. Ng C, Mei CC (1994) Roll waves on a shallow layer of mud modelled as a power-law fluid. J Fluid Mech 263:151–184

    Article  ADS  MATH  Google Scholar 

  38. Hwang C, Chen J, Wang J, Lin J (1994) Linear stability of power law liquid film flows down an inclined plane. J Phys D Appl Phys 27:2297–2301

    Article  ADS  Google Scholar 

  39. Pascal JP (2006) Instability of power-law fluid flow down a porous incline. J Non Newton Fluid Mech 133:109–120

    Article  MATH  Google Scholar 

  40. Di Cristo C, Iervolino M, Vacca A (2013) Gravity-driven flow of a shear-thinning power-law fluid over a permeable plane. Appl Math Sci 7(33):1623–1641

    MathSciNet  Google Scholar 

  41. Pascal JP, D’Alessio SJD (2007) Instability of power-law fluid flows down an incline subjected to wind stress. Appl Math Model 31:1229–1248

    Article  MATH  Google Scholar 

  42. Trowbridge JH (1987) Instability of concentrated free surface flows. J Geophys Res 92(C9):9523–9530

    Article  ADS  Google Scholar 

  43. Coussot P (1994) Steady, laminar, flow of concentrated mud suspensions in open channel. J Hydraul Res 32(4):535–559

    Article  Google Scholar 

  44. Di Cristo C, Iervolino M, Vacca A (2013) Boundary conditions effect on linearized mud-flow shallow model. Acta Geophys 61(3):649–667

    Article  ADS  Google Scholar 

  45. Liu KF, Mei CC (1989) Slow spreading of a sheet of Bingham fluid on an inclined plane. J Fluid Mech 207:505–529

    Article  ADS  MATH  Google Scholar 

  46. Balmforth NJ, Liu JJ (2004) Roll waves in mud. J Fluid Mech 519:33–54

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Wang ZY (2002) Free surface instability of non-Newtonian laminar flows. J Hydraul Res 40(4):449–460

    Article  Google Scholar 

  48. Tamburrino A, Ihle CF (2013) Roll wave appearance in bentonite suspensions flowing down inclined planes. J Hydraul Res 51(3):330–335

    Article  Google Scholar 

  49. Sadiq IMR, Usha R (2010) Effect of permeability on the instability of a non-Newtonian film down a porous inclined plane. J Non Newton Fluid Mech 165:1171–1188

    Article  MATH  Google Scholar 

  50. Heining C, Aksel N (2010) Effects of inertia and surface tension on a power-law fluid flowing down a wavy incline. Int J Multiph Flow 36(11–12):847–857

    Article  Google Scholar 

  51. Zakaria K, Sirwah MA, Alkharashi SA (2012) Non-linear analysis of creeping flow on the inclined permeable substrate plane subjected to an electric field. Int J Non-Linear Mech 47(6):577–598

    Article  Google Scholar 

  52. Laigle D, Coussot P (1997) Numerical modeling of mudflows. J Hydraul Eng 123:617–623

    Article  Google Scholar 

  53. Di Federico V (1998) Permanent waves in slow free-surface flow of a Herschel-Bulkley fluid. Meccanica 33(2):127–137

    Article  MATH  MathSciNet  Google Scholar 

  54. Ancey C (2001) Snow. Selected topics in geological and geomorphological fluid mechanics. Springer, Berlin

    Google Scholar 

  55. Ancey C (2005) Solving the Couette inverse problem by using a wavelet-vaguelette decomposition. J Rheol 49:441–460

    Article  ADS  Google Scholar 

  56. Ancey C, Andreini N, Epely-Chauvin G (2012) Viscoplastic dambreak waves: Review of simple computational approaches and comparison with experiments. Adv Water Resour 48:79–91

    Article  ADS  Google Scholar 

  57. Di Cristo C, Iervolino M, Vacca A (2014) Applicability of kinematic, diffusion, and quasi-steady dynamic wave models to shallow mud flows. J Hydrol Eng 19(5):956–965

    Article  Google Scholar 

  58. Witham GB (1974) Linear and nonlinear waves. John Wiley & Sons Interscience, New York

    Google Scholar 

  59. Bird RB, Dai GC, Yarusso BJ (1983) The rheology and flow of viscoplastic materials. Rev Chem Eng 1:1–70

    Google Scholar 

  60. Di Cristo C, Iervolino M, Vacca A (2013) Waves dynamics in a linearized mud-flow shallow model. Appl Math Sci 7(8):377–393

    MathSciNet  Google Scholar 

  61. Leopardi A, Oliveri E, Greco M (2002) Two-dimensional modeling of floods to map risk prone areas. J Water Resour Plan Manag ASCE 128(3):168–178

    Article  Google Scholar 

  62. Greco M, Iervolino M, Leopardi A, Vacca A (2012) A two-phase model for fast geomorphic shallow flows. Int J Sed Res 27(4):409–425

    Article  Google Scholar 

  63. Nycander J, Hogg AMC, Frankcombe LM (2008) Open boundary conditions for nonlinear channel flow. Ocean Model 24:108–121

    Article  ADS  Google Scholar 

  64. Di Cristo C, Iervolino M, Vacca A (2013) On the applicability of minimum channel length criterion for roll-waves in mud-flows. J Hydrol Hydromech 61(4):286–292

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the reviewers for their valuable comments and suggestions, which substantially improved the paper quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Vacca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Cristo, C., Iervolino, M. & Vacca, A. On the stability of gradually varying mud-flows in open channels. Meccanica 50, 963–979 (2015). https://doi.org/10.1007/s11012-014-0075-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0075-y

Keywords

Navigation