Skip to main content
Log in

An improved hydrodynamic journal bearing with the boundary slippage

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The paper presents an analysis for an infinitely wide hydrodynamic journal bearing with artificially designed boundary slippage at the stationary journal surface in the bearing inlet zone. The load-carrying capacity, friction coefficient, attitude angle, shear stress and slipping velocity distributions of the bearing are derived. The results show that the performance of the hydrodynamic journal bearing with modest and small eccentricity ratios can be significantly improved by the designed boundary slippage. When the boundary slippage is widely designed and the contact-fluid interfacial shear strength at the slipping journal surface is low, the carried load of this kind of bearing can be increased nearly by 100 % while its friction coefficient can be reduced by more than 60 %, because of the boundary slippage. The results indicate great application values of the artificial boundary slippage in this kind of hydrodynamic journal bearing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

c :

Clearance, R − r

DU :

Dimensionless interfacial slipping velocity at the journal surface

e :

Eccentricity of the bearing

f :

Friction coefficient

F x :

Force component in the x axis direction of the hydrodynamic fluid acting on the shaft per unit contact width

F y :

Force component in the y axis direction of the hydrodynamic fluid acting on the shaft per unit contact width

F f,h :

Friction force at the journal surface per unit contact width

F f,s :

Friction force at the shaft surface per unit contact width

\( \bar{F}_{f,h} \) :

Dimensionless friction force at the journal surface per unit contact width

\( \bar{F}_{f,s} \) :

Dimensionless friction force at the shaft surface per unit contact width

\( \bar{F}_{x} \) :

Dimensionless force component in the x axis direction of the hydrodynamic fluid acting on the shaft per unit contact width

\( \bar{F}_{y} \) :

Dimensionless force component in the y axis direction of the hydrodynamic fluid acting on the shaft per unit contact width

I 1, I 2, I 3, I 4, I 5, I 6, I 7, I 8 :

Respectively functions listed in the Appendix

k τ :

Dimensionless interfacial shear strength, τ sa c/()

p :

Fluid film pressure

p slip,max :

Maximum fluid film pressure in the present slippage bearing

P :

Dimensionless fluid film pressure

P 1,slip :

Dimensionless pressure at the boundary between the “A” and “B” subzones in the present slippage bearing

q v :

Volume flow rate of the fluid through the bearing per unit contact width

Q v :

Dimensionless volume flow rate of the fluid through the bearing per unit contact width

r :

Shaft radius

R :

Journal radius

u :

Circumferential speed of the shaft

w :

Load per unit contact width of the bearing

W :

Dimensionless carried load per unit contact width of the bearing

x, y :

Coordinates

ɛ :

Eccentricity ratio, e/c

ϕ :

Angular coordinate

ϕ slip :

Envelope angle of the boundary slippage area, Fig. 1

Fig. 1
figure 1

Picture of the infinitely wide hydrodynamic journal bearing with artificial boundary slippage modeled in the present paper

ϕ 0 :

Angular coordinate of the location where the maximum lubricant film pressure occurs, Fig. 1

θ :

Sommerfeld transformation angle from ϕ

θ slip :

Sommerfeld transformation angle from ϕ slip

θ 0 :

Sommerfeld transformation angle from ϕ 0

τ sa :

Contact-fluid interfacial shear strength at the journal surface in the slippage lubricated zone

η :

Fluid viscosity

τ :

Shear stress

\( \bar{\tau } \) :

Dimensionless shear stress

λ 0, λ 1, λ 2 :

Dimensionless parameters

β :

Angle, Eq. (25)

γ :

Attitude angle of the bearing

Δu :

Interfacial slipping velocity at the journal surface

conv:

For the conventional bearing

h:

At the journal surface

s:

At the shaft surface

slip:

For the present slippage bearing

References

  1. Zhang YB, Wen SZ (2002) An analysis of elastohydrodynamic lubrication with limiting shear stress: Part I-theory and solutions. Tribol Trans 45:135–144

    Article  Google Scholar 

  2. Rozeanu L, Snarsky L (1978) Effect of solid surface lubricant interaction on the load carrying capacity of sliding bearings. ASME J Lubr Tech 100:167–175

    Article  Google Scholar 

  3. Pit R, Hervet H, Leger L (2000) Direct experimental evidence of slip in hexadecane: solid interfaces. Phy Rev Lett 85:980–983

    Article  ADS  Google Scholar 

  4. Spikes HA (2003) The half-wetted bearing. Part 1: extended Reynolds equation. Proc Inst Mech Eng Part J J Eng Tribol 217:1–14

    Article  Google Scholar 

  5. Bonaccurso E, Butt HJ, Craig VSJ (2003) Surface roughness and hydrodynamic boundary slip of a Newtonian fluid in a completely wetting system. Phy Rev Lett 90:144501

    Article  ADS  Google Scholar 

  6. Craig VSJ, Neto C, Williams DRM (2001) Shear-dependent boundary slip in an aqueous Newtonian liquid. Phy Rev Lett 87:054504

  7. Salant RF, Fortier AE (2004) Numerical analysis of a slider bearing with a heterogeneous slip/no-slip surface. Tribol Trans 47:328–334

    Article  Google Scholar 

  8. Fortier AE, Salant RF (2005) Numerical analysis of a journal bearing with a heterogeneous slip/no-slip surface. ASME J Tribol 127:820–825

    Article  Google Scholar 

  9. Wu CW, Ma GJ, Zhou P, Wu CD (2006) Low friction and high load support capacity of slider bearing with a mixed slip surface. ASME J Tribol 128:904–907

    Article  Google Scholar 

  10. Ma GJ, Wu CW, Zhou P (2008) Influence of wall slip on the dynamic properties of a rotor-bearing system. Tribol Trans 51:204–212

    Article  Google Scholar 

  11. Zhang YB (2008) Boundary slippage for generating hydrodynamic load-carrying capacity. Appl Math Mech 29:1155–1164

    Article  MATH  Google Scholar 

  12. Zhang YB (2010) Boundary slippage for improving the load and friction performance of a step bearing. Trans Can Soc Mech Eng 34:373–387

    Google Scholar 

  13. Zhang YB (2013) A tilted pad thrust slider bearing improved by boundary slippage. Meccanica 48:769–781

    Article  MathSciNet  Google Scholar 

  14. Zhang YB (2014) Hydrodynamic lubrication in line contacts improved by the boundary slippage. Meccanica 49:503–519

    Article  MATH  MathSciNet  Google Scholar 

  15. Pinkus O, Sternlicht B (1961) Theory of hydrodynamic lubrication. McGraw-Hill, New York

    MATH  Google Scholar 

Download references

Acknowledgments

The author would like to express thanks to the project from Changzhou Science and Technology Bureau (CJ20120033) and the Qing Lan Project of Jiangsu Provincial Education Bureau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbin Zhang.

Appendix

Appendix

$$ \begin{aligned} I_{1} (\theta ) = & \int {\frac{\cos \theta - \varepsilon }{{(1 - \varepsilon \cos \theta )^{2} }}d\theta = \frac{\sin \theta }{1 - \varepsilon \cos \theta }} \\ I_{2} (\theta ) = & \int {\frac{\theta (\cos \theta - \varepsilon )}{{(1 - \varepsilon \cos \theta )^{2} }}d\theta = \frac{\theta \sin \theta }{1 - \varepsilon \cos \theta } - \frac{\ln |1 - \varepsilon \cos \theta |}{\varepsilon }} \\ I_{3} (\theta ) = & \int {\frac{\sin \theta (\cos \theta - \varepsilon )}{{(1 - \varepsilon \cos \theta )^{2} }}d\theta = \frac{{\varepsilon^{2} - 1}}{{\varepsilon^{2} (1 - \varepsilon \cos \theta )}} - \frac{\ln |1 - \varepsilon \cos \theta |}{{\varepsilon^{2} }}} \\ I_{4} (\theta ) = & \int {\frac{\sin 2\theta (\cos \theta - \varepsilon )}{{(1 - \varepsilon \cos \theta )^{2} }}d\theta = \frac{2}{{\varepsilon^{3} }}\left[ {(\varepsilon^{2} - 1)\left( {\ln\left| {\frac{1}{\varepsilon } - \cos \theta } \right| + \frac{1}{1 - \varepsilon \cos \theta }} \right) - \varepsilon \cos \theta - \ln \left| {\frac{1}{\varepsilon } - \cos \theta } \right|} \right]} \\ I_{5} (\theta ) = & \int {\frac{\sin \theta }{{(1 - \varepsilon \cos \theta )^{2} }}d\theta = \frac{1}{\varepsilon (\varepsilon \cos \theta - 1)}} \\ I_{6} (\theta ) = & \int {\frac{\theta \sin \theta }{{(1 - \varepsilon \cos \theta )^{2} }}d\theta = \frac{\theta }{\varepsilon (\varepsilon \cos \theta - 1)}} + \frac{2}{{\varepsilon \sqrt {1 - \varepsilon^{2} } }}\arctan \left[ {\left| {\sqrt {\frac{1 + \varepsilon }{1 - \varepsilon }} \tan \left( {\frac{\theta }{2}} \right)} \right|} \right] \\ I_{7} (\theta ) = & \int {\frac{{\sin^{2} \theta }}{{(1 - \varepsilon \cos \theta )^{2} }}d\theta = \frac{\sin \theta }{\varepsilon (\varepsilon \cos \theta - 1)}} + \frac{2}{{\varepsilon^{2} \sqrt {1 - \varepsilon^{2} } }}\arctan \left[ {\left| {\sqrt {\frac{1 + \varepsilon }{1 - \varepsilon }} \tan \left( {\frac{\theta }{2}} \right)} \right|} \right] - \frac{\theta }{{\varepsilon^{2} }} \\ I_{8} (\theta ) = & \int {\frac{\sin 2\theta \sin \theta }{{(1 - \varepsilon \cos \theta )^{2} }}d\theta = \frac{\sin 2\theta }{\varepsilon (\varepsilon \cos \theta - 1)}} + \frac{{8 - 4\varepsilon^{2} }}{{\varepsilon^{3} \sqrt {1 - \varepsilon^{2} } }}\arctan \left[ {\left| {\sqrt {\frac{1 + \varepsilon }{1 - \varepsilon }} \tan \left( {\frac{\theta }{2}} \right)} \right|} \right] - \frac{4\sin \theta }{{\varepsilon^{2} }} - \frac{4\theta }{{\varepsilon^{3} }} \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. An improved hydrodynamic journal bearing with the boundary slippage. Meccanica 50, 25–38 (2015). https://doi.org/10.1007/s11012-014-0064-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0064-1

Keywords

Navigation