Skip to main content
Log in

A new class of interdependent shape polynomials for the FE dynamic analysis of Mindlin plate Timoshenko beam

  • Advances in Dynamics, Stability and Control of Mechanical Systems
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper proposes a new class of shape polynomials, able of solving the well known shear-locking phenomena and the high-order time derivative effect problems which can suffer the Mindlin plate model. These polynomials eliminate the inconsistency of the higher-order spectra because are built on the consistent version of the governing equations previously proposed by Elishakoff. Using these equations, the new class of interdependent shape polynomials is obtained by introducing a new kinematic variable: the fictitious deflection. The interdependence of the polynomials ensures that the corresponding finite element model is free of locking. Lastly, the interdependent shape polynomials for the Timoshenko beam model are derived as a special case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reddy JN (1980) A penalty plate bending element for the analysis of laminated anisotropic composite plates. Int J Numer Methods Eng 15:1187–1206

    Article  MATH  Google Scholar 

  2. Averill RC, Reddy JN (1990) On the behavior of plate elements based on the first-order shear deformation theory. Eng Comput 7:57–74

    Article  Google Scholar 

  3. Zienkiewicz OC, Taylor RL, To JM (1971) Reduced integration technique in general analysis of plates and shells. Int J Numer Methods Eng 3:275–290

    Article  MATH  Google Scholar 

  4. Hughes TJR, Taylor RL, Kanoknukulchai W (1977) Simple and efficient element for plate bending. Int J Numer Methods Eng 11:1529–1543

    Article  MATH  Google Scholar 

  5. Reddy JN (1993) An introduction to the finite element method, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  6. Lee SW, Wong C (1982) Mixed formulation finite elements for Mindlin theory plate bending. Int J Numer Methods Eng 18:1297–1311

    Article  MATH  Google Scholar 

  7. Auricchio F, Taylor RL (1995) A triangular thick plate finite element with an exact thin limit. Finite Elem Anal Des 19:57–68

    Article  MATH  Google Scholar 

  8. Lovadina C (1998) Analysis of a mixed finite element method for the Reissner–Mindlin plate problems. Comput Methods Appl Mech Eng 163:71–85

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Cazzani A, Lovadina C (1997) On some mixed finite element methods for plane membrane problems. Comput Mech 20:560–572

    Article  MATH  MathSciNet  Google Scholar 

  10. Garusi E, Tralli A, Cazzani A (2004) An unsymmetric stress formulation for Reissner–Mindlin plates: a simple and locking-free rectangular element. Int J Comput Eng Sci 5:589–618

    Article  Google Scholar 

  11. Cazzani A, Garusi E, Tralli A, Atluri SN (2005) A four-node hybrid assumed-strain finite element for laminated composite plates. Comput Mater Contin 2:23–38

    MATH  Google Scholar 

  12. Hughes TJR, Tezduyar T (1981) Finite elements based upon Mindlin plate theory with particular reference to the four-node isoparametric element. J Appl Mech 48:587–596

    Article  MATH  Google Scholar 

  13. Bathe KJ (1996) Finite element procedures. Prentice-Hall/MIT, Englewood Cliffs

    Google Scholar 

  14. Zienkiewicz OC, Taylor RL (2000) The finite element method, 5th edn. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  15. Bletzinger K, Bischoff M, Ramm E (2000) A unified approach for shear-locking-free triangular and rectangular shell finite elements. Comput Struct 75:321–334

    Article  Google Scholar 

  16. Nguyen-Xuan H, Liu GR, Thai-Hoang C, Nguyen-Thoi T (2010) An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner–Mindlin plates. Comput Methods Appl Mech Eng 199:471–489

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Liu GR, Nguyen-Thoi T, Lam YK (2009) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320:1100–1130

    Article  ADS  Google Scholar 

  18. Falsone G, Settineri D (2012) A Kirchhoff-like solution for the Mindlin plate model: a new finite element approach. Mech Res Commun 40(1):10

    Google Scholar 

  19. Falsone G, Settineri D (2011) An Euler–Bernoulli-like finite element method for Timoshenko beams. Mech Res Commun 38:12–16

    Article  MATH  Google Scholar 

  20. Stephen NG (1982) The second frequency spectrum of Timoshenko beams. J Sound Vib 80:578–582

    Article  ADS  Google Scholar 

  21. Stephen NG (2006) The second spectrum of Timoshenko beam theory—further assessment. J Sound Vib 292:372–389

    Article  ADS  MATH  Google Scholar 

  22. Stephen NG (1997) Mindlin plate theory: best shear coefficient and higher spectra validity. Journal of Sound Vibration 202:539–553

    Article  ADS  Google Scholar 

  23. Levinson M (1998) Free vibrations of a simply supported, rectangular plate: an exact elasticity solution. J Sound Vib 98:2898

    Google Scholar 

  24. Elishakoff I (2010) An equation both more consistent and simpler than the Bresse–Timoshenko equation. In: Gilat R, Banks-Sills L (eds) Advances in mathematical modeling and experimental methods for materials and structures, solid mechanics and its applications. Springer, Berlin, pp 249–254

    Google Scholar 

  25. Nesterenko VV (1993) A theory for transverse vibrations of a Timoshenko beam. PMM J Appl Math Mech 57:669–677

    Article  MathSciNet  Google Scholar 

  26. Timoshenko SP (1921) On the correction for shear of the differential equation for transverse vibration of prismatic bars. Philos Mag Ser 6(41):744–746

    Article  Google Scholar 

  27. Elishakoff I, Lubliner E (1984) Random vibration of a structure via classical and non classical theories. In: Eggwertz S, Lind NC (eds) Probabilistic methods in the mechanics of solids and structures. Springer, Berlin, pp 455–468

    Google Scholar 

  28. Elishakoff I, Livshits D (1989) Some closed-form solutions in random vibrations of Timoshenko beams. Probab Eng Mech 4:49–54

    Article  Google Scholar 

  29. Sayir M (1980) Flexural vibrations of strongly anisotropic beams. Ingenieur-Archiv 49:309–323

    Article  MATH  Google Scholar 

  30. Elishakoff I (1994) Generalization of the Bolotin’s dynamic edge effect method for vibration analysis of Mindlin plates. In: Cuschieri JM, Glegg SAL, Yeager DM (eds) National conference on noise control engineering, New York, pp 911–916

  31. Reddy JN, Wang CM, Lee KH (1997) Relationship between bending solution of classical and shear deformation beam theory. Int J Solids Struct 34(26):3373–3384

    Article  MATH  Google Scholar 

  32. Wang CM (1995) Timoshenko beam bending solutions in terms of Euler–Bernoulli solutions. J Eng Mech 121:763–765

    Article  Google Scholar 

  33. Reddy JN (1997) On locking free shear deformable beam elements. Comput Methods Appl Mech Eng 1997(149):113–132

    Article  ADS  Google Scholar 

  34. Kaplunov JD, Kossovich LY, Nolde EV (1998) Dynamics of thin walled elastic bodies. Academic Press, San Diego

    MATH  Google Scholar 

  35. Averill RC, Reddy JN (1992) An assessment of four-noded plate finite element based on a generalized third-order theory. Int J Numer Meth Eng 33:1553–1572

    Article  MATH  Google Scholar 

  36. Hashemi SH, Arsanjani M (2005) Exact characteristic equations for some of classical boundary conditions of vibrating moderately thick rectangular plates. Int J Solids Struct 42:819–853

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Settineri.

Appendix

Appendix

A n-nodes FE is taken into account and it is supposed that the vector \( {\bar{\mathbf{u}}} \) collects the nodal values of \( \bar{U} \), of \( - \partial \bar{U}/\partial x \) and of \( - \partial \bar{U}/\partial y \). Likewise, the vector u collects the nodal values of U, \( \varPhi_{x} \) and \( \varPhi_{y} \). If the jth, the j + 1th and the j + 2th element of \( {\bar{\mathbf{u}}} \), (\( \bar{u}_{j} \), \( \bar{u}_{j + 1} \) and \( \bar{u}_{j + 2} \)), are the nodal values of \( \bar{U} \), \( - \partial \bar{U}/\partial x \) and \( - \partial \bar{U}/\partial y \) at the node of coordinates \( \left( {x_{j} ,y_{j} } \right) \), using the relationships given in Eqs. (20) and the approximation for \( \bar{U} \) given in Eq. (21a), the following expressions are obtained:

$$ \begin{aligned} u_{j} & = \bar{u}_{j} + \left[ { - \left( {\frac{{r_{I} }}{{r_{A} }} + \frac{D}{S}} \right)\left. {\nabla^{2} {\varvec{\uppsi}}^{T} } \right|_{\begin{subarray}{l} x = x_{j} \\ y = y_{j} \end{subarray} } } \right]{\bar{\mathbf{u}}}; \quad u_{j + 1} = \bar{u}_{j + 1} + \left[ {\frac{{r_{I} }}{{r_{A} }}\left. {\frac{{\partial \nabla^{2} {\varvec{\uppsi}}^{T} }}{\partial x}} \right|_{\begin{subarray}{l} x = x_{j} \\ y = y_{j} \end{subarray} } } \right]{\bar{\mathbf{u}}}; \hfill \\ u_{j + 2} &= \bar{u}_{j + 2} + \left[ {\frac{{r_{I} }}{{r_{A} }}\left. {\frac{{\partial \nabla^{2} {\varvec{\uppsi}}^{T} }}{\partial y}} \right|_{\begin{subarray}{l} x = x_{j} \\ y = y_{j} \end{subarray} } } \right]{\bar{\mathbf{u}}} \hfill \\ \end{aligned} $$
(40a-c)

where u j , u j+1 and u j+2 are the nodal values of U, \( \varPhi_{x} \) and \( \varPhi_{y} \) at the node of coordinates \( \left( {x_{j} ,y_{j} } \right) \). Applying the above equations for all the n nodes of the element, that is for \( j = 1,2, \ldots n \), it is possible to write the following compact equation:

$$ {\mathbf{u}} = \left( {{\mathbf{I}} + {\mathbf{C}}} \right){\bar{\mathbf{u}}} $$
(41)

where C is a constant square matrix of order 3n whose kth row is equal to:

  1. (a)

    the function vector \( - \left( {r_{I} /r_{A} + D/S} \right)\nabla^{2} {\varvec{\uppsi}}^{T} \) evaluated at the corresponding nodal coordinates, if the u k element is a deflection;

  2. (b)

    the function vector \( - r_{I} /r_{A} \partial \nabla^{2} {\varvec{\uppsi}}^{T} /\partial x \) evaluated at the corresponding nodal coordinates, if the u k element is a rotation \( \varPhi_{x} \);

  3. (c)

    the function vector \( - r_{I} /r_{A} \partial \nabla^{2} {\varvec{\uppsi}}^{T} /\partial y \) evaluated at the corresponding nodal coordinates, if the u k element is a rotation \( \varPhi_{y} . \)

Equations (23) in the text follow immediately from Eq. (41).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falsone, G., Settineri, D. & Elishakoff, I. A new class of interdependent shape polynomials for the FE dynamic analysis of Mindlin plate Timoshenko beam. Meccanica 50, 767–780 (2015). https://doi.org/10.1007/s11012-014-0032-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0032-9

Keywords

Navigation