Skip to main content
Log in

Dynamic and energy analysis of frictional contact instabilities on a lumped system

  • Advances in Dynamics, Stability and Control of Mechanical Systems
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

When dealing with complex mechanical systems, the frictional contact is at the origin of significant changes in their dynamic behavior. The presence of frictional contact can give rise to mode-coupling instabilities that produce harmonic friction induced vibrations. Unstable vibrations can reach large amplitude that could compromise the structural and surface integrity of the system and are often associated with annoying noise emission. The study of this kind of dynamic instability has been the subject of many studies ranging from both theoretical and numerical analysis of simple lumped models to numerical and experimental investigation on real mechanical systems, such as automotive brakes, typically affected by such issue. In this paper the numerical analysis of a lumped system constituted by several degrees of freedom in frictional contact with a slider is presented, where the introduction of friction can give rise to an unstable dynamic behavior. Two different approaches are used to investigate the effects of friction forces. The first approach, the Complex Eigenvalues Analysis, allows for calculating the complex eigenvalues of the linear system that can be characterized by a positive real part (i.e. negative modal damping). The complex eigenvalues and eigenvectors of the system are investigated with respect to friction. In the second approach a non linear model has been developed accounting for the stick–slip–detachment behavior at the interface to solve the time history solution and analyze the unstable vibration. The effects of boundary conditions and of system parameters are investigated. Results comparison between the two different approaches highlights how nonlinearities affect the time history solution. The lumped model allows for a detailed analysis of the energy flows between the boundary and the system during self-excited vibrations, which are at the origin of the selection between the predicted unstable mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Akay A (2002) Acoustics of friction. J Acoust Soc Am 111(4):1525–1548. doi:10.1121/1.1456514

    Article  ADS  Google Scholar 

  2. Baillet L, Linck V, D’Errico S, Laulagnet B, Berthier Y (2005) Finite element simulation of dynamic instabilities in frictional sliding contact. J Tribol 127(3):652–657. doi:10.1115/1.1866160

    Article  Google Scholar 

  3. Bengisu M, Akay A (1994) Stability of friction-induced vibrations in multi-degree-of-freedom systems. J Sound Vib 171(4):557–570. doi:10.1006/jsvi.1994.1140

    Article  ADS  MATH  Google Scholar 

  4. Brunetti J, Massi F, Saulot A, D’Ambrogio W (2013) Modal dynamic instabilities generated by frictional contact. In: Proceedings of the 5th world tribology congress (WTC-2013)

  5. Cantone F, Massi F (2011) A numerical investigation into the squeal instability: effect of damping. Mech Syst Signal Process 25(5):1727–1737. doi:10.1016/j.ymssp.2010.12.005

    Article  ADS  Google Scholar 

  6. Chen G, Zhou Z (2007) A self-excited vibration model based on special elastic vibration modes of friction systems and time delays between the normal and friction forces: a new mechanism for squealing noise. Wear 262:1123–1139. doi:10.1016/j.wear.2006.11.014

    Article  Google Scholar 

  7. Chevillot F, Sinou JJ, Hardouin N, Jézéquel L (2010) Effects of damping on the speed of increase and amplitude of limit cycle for an aircraft braking system subjected to mode-coupling instability. Arch Appl Mech 80(9):1045–1054. doi:10.1007/s00419-009-0352-8

    Article  MATH  Google Scholar 

  8. Coudeyras N, Sinou JJ, Nacivet S (2009) A new treatment for predicting the self-excited vibrations of nonlinear systems with frictional interfaces: the constrained harmonic balance method, with application to disc brake squeal. J Sound Vib 319(3):1175–1199. doi:10.1016/j.jsv.2008.06.050

    Article  ADS  Google Scholar 

  9. Dezi M, Forte P, Frendo F (2014) Motorcycle brake squeal: experimental and numerical investigation on a case study. Meccanica 49(4):1011–1021. doi:10.1007/s11012-013-9848-y

    Article  Google Scholar 

  10. Di Bartolomeo M, Massi F, Baillet L, Culla A, Fregolent A, Berthier Y (2012) Wave and rupture propagation at frictional bimaterial sliding interfaces: from local to global dynamics, from stick–slip to continuous sliding. Tribol Int 52(0):117–131. doi:10.1016/j.triboint.2012.03.008

    Article  Google Scholar 

  11. Fan N, Chen G, Qian L (2011) Analysis of squeaking on ceramic hip endoprosthesis using the complex eigenvalue method. Wear 271(9–10):2305–2312. doi:10.1016/j.wear.2010.12.024

    Article  Google Scholar 

  12. Giannini O, Sestieri A (2006) Predictive model of squeal noise occurring on a laboratory brake. J Sound Vib 296(3):583–601. doi:10.1016/j.jsv.2006.02.022

    Article  ADS  Google Scholar 

  13. Hoffmann N, Gaul L (2003) Effects of damping on mode-coupling instability in friction induced oscillations. ZAMM 83(8):524–534. doi:10.1002/zamm.200310022

    Article  MATH  Google Scholar 

  14. Hoffmann N, Fischer M, Allgaier R, Gaul L (2002) A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech Res Commun 29(4):197–205. doi:10.1016/S0093-6413(02)00254-9

    Article  MATH  Google Scholar 

  15. Ibrahim RA (1994a) Friction-induced vibration, chatter, squeal, and chaos—Part I: Mechanics of contact and friction. Appl Mech Rev 47(7):209–226. doi:10.1115/1.3111079

    Article  ADS  Google Scholar 

  16. Ibrahim RA (1994b) Friction-induced vibration, chatter, squeal, and chaos—Part II: Dynamics and modeling. Appl Mech Rev 47(7):227–253. doi:10.1115/1.3111080

    Article  ADS  Google Scholar 

  17. Kinkaid N, O’Reilly O, Papadopoulos P (2003) Automotive disc brake squeal. J Sound Vib 267(1):105–166. doi:10.1016/S0022-460X(02)01573-0

    Article  ADS  Google Scholar 

  18. Massi F, Giannini O (2008) Effect of damping on the propensity of squeal instability: an experimental investigation. J Acoust Soc Am 123(4):2017–2023. doi:10.1121/1.2875628

    Article  ADS  Google Scholar 

  19. Massi F, Giannini O, Baillet L (2006) Brake squeal as dynamic instability: an experimental investigation. J Acoust Soc Am 120(3):1388–1398. doi:10.1121/1.2228745

    Article  ADS  Google Scholar 

  20. Massi F, Baillet L, Giannini O, Sestieri A (2007) Brake squeal: linear and nonlinear numerical approaches. Mech Syst Signal Process 21(6):2374–2393. doi:10.1016/j.ymssp.2006.12.008

    Article  ADS  Google Scholar 

  21. Ouyang H, Nack W, Yuan Y, Chen F (2005) Numerical analysis of automotive disc brake squeal: a review. Int J Veh Noise Vib 1(3–1):207–231. doi:10.1504/IJVNV.2005.007524

    Article  Google Scholar 

  22. Renouf M, Massi F, Saulot A, Fillot N (2011) Numerical tribology of dry contact. Tribol Int 44(7–8):834–844

    Article  Google Scholar 

  23. Sheng G (2007) Friction-induced vibrations and sound: principles and applications. CRC Press, Boca Raton

    Google Scholar 

  24. Sinou JJ, Jézéquel L (2007) Mode coupling instability in friction-induced vibrations and its dependency on system parameters including damping. Eur J Mech A Solids 26(1):106–122. doi:10.1016/j.euromechsol.2006.03.002

    Article  MATH  Google Scholar 

  25. Sinou JJ, Thouverez F, Jézéquel L (2004) Methods to reduce non-linear mechanical systems for instability computation. Arch Comput Methods Eng 11(3):257–344. doi:10.1007/BF02736228

    Article  MATH  Google Scholar 

  26. Tonazzi D, Massi F, Culla A, Baillet L, Fregolent A, Berthier Y (2013) Instability scenarios between elastic media under frictional contact. Mech Syst Signal Process 40(2):754–766. doi:10.1016/j.ymssp.2013.05.022

    Article  ADS  Google Scholar 

  27. Weiss C, Hothan A, Huber G, Morlock MM, Hoffmann NP (2012) Friction-induced whirl vibration: root cause of squeaking in total hip arthroplasty. J Biomech 45(2):297–303. doi:10.1016/j.jbiomech.2011.10.025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacopo Brunetti.

Appendix: System matrices in sliding condition

Appendix: System matrices in sliding condition

With reference to the system in Fig. 1 the system matrices used in (3) to solve the complex eigenvalue problem can be defined writing the Lagrangian equation of the system to find the equation of motion considering the normal and tangential forces at the contact.

Applying the sliding condition on both the contacting points:

$$ \left\{ \begin{array}{l} x_{4}=\dot{x}_{4}=\ddot{x}_{4}=0 \quad \hbox {and} \,T_{1}=\mu N_{1}\\ x_{8}=\dot{x}_8=\ddot{x}_{8}=0 \quad \hbox {and} \, T_{2}=\mu N_{2}\\ \end{array} \right. $$
(18)

the number of DoFs of the system can be reduced up to 6.

The coordinate vector of the system is in this case:

$${\varvec{x}}=[x_{1}\,x_{2}\,x_{3}\,x_{5}\,x_{6}\,x_{7}]^{T} $$
(19)

and the mass and stiffness matrices are:

$$ {\mathbf{M}}= \hbox{diag} ([m_{1}\,m_{1}\,m_{2}\,m_{3}\,m_{3}\,m_{4}]) $$
(20)
$$\begin{aligned} {\mathbf{K}} = \begin{array}{l} \left[ \begin{array}{cccccc} k_{1}+k_{3}+k_{8} & 0 & -k_{8} a_{1} & -k_{3}& 0 & 0\\ 0 & k_{2}+k_{5}+k_{6} & -k_{2} b_{1} & 0 & -k_{6} & 0\\ -k_{8}(a_{1}+\mu b_{1}) & k_{2}(\mu a_{1}-b_{1}) & k_{8} a_{1}^{2}+k_{2} b_{1}^{2}+\mu (k_{8}-k_{2})a_{1} b_{1} & 0 & 0 &\\ -k_{3}& 0 & 0 & k_{3}+k_{9} & 0 & -k_{9} a_2\\ 0 & -k_{6} & 0 & 0 & k_{4}+k_{6}+k_{7} & -k_{4} b_{2}\\ 0 & 0 & 0 & -k_{9}(a_{2}+\mu b_{2}) & k_4(\mu a_{2}-b_{2}) & k_{9} a_{2}^{2} + k_{4} b_{2}^{2} + \mu (k_{9}-k_{4})a_{2} b_{2}\\ \end{array}\right] \end{array} \end{aligned} $$
(21)

where:

$$ a_{i}=\cos \theta_{i} \quad \hbox {and} \quad b_{i}=\sin \theta _i $$
(22)

The damping matrix is defined as proportional to the stiffness matrix by means of the proportional coefficient β defined in Table 1:

$$ {\mathbf{C}}=\beta {\mathbf{K}} $$
(23)

Finally, the forces vector at the second member of (3) assumes the following value:

$$ {\varvec{F}}=[ 0-k_{5} \delta_{1}-F_{Ex,1}\,0\,0-k_{7}\delta_{2}-F_{Ex,2}0 ]^{T} $$
(24)

The same approach can be applied for each contact condition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunetti, J., Massi, F., D’Ambrogio, W. et al. Dynamic and energy analysis of frictional contact instabilities on a lumped system. Meccanica 50, 633–647 (2015). https://doi.org/10.1007/s11012-014-0020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-014-0020-0

Keywords

Navigation