Skip to main content
Log in

A free boundary problem: steady axisymmetric potential flow

  • Brief Notes and Discussions
  • Published:
Meccanica Aims and scope Submit manuscript

An Erratum to this article was published on 20 November 2013

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Baiocchi C, Comincioli V, Maione U (1975) Unconfined flow through porous media. Meccanica 10(3):151–155

    Article  MATH  Google Scholar 

  2. Benjamin TB, Lighthill MJ (1954) On cnoidal waves and bores. Proc R Soc Lond Ser A 224:448–460

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennet A (2006) Lagrangian fluid dynamics. Cambridge monographs on mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Boussinesq JV (1871) Théorie de l’intumescence liquide appelée “onde solitaire” ou “de translation”, se propageant dans un canal rectangulaire. C R Acad Sci 72:755–759

    MATH  Google Scholar 

  5. Cenedese A (2003) Meccanica dei fluidi. McGraw-Hill, Milano

    Google Scholar 

  6. Chapuis RP, Chenaf D, Bussière B, Aubertin M, Crespo R (2001) A user’s approach to assess numerical codes for saturated and unsaturated seepage conditions. Can Geotech J 38:1113–1126

    Article  Google Scholar 

  7. Chenaf D, Chapuis RP (2007) Seepage face height, water table position, and well efficiency at steady state. Ground Water 45(2):168–177

    Article  Google Scholar 

  8. Collins RE (1999) Mathematical methods for physicists and engineers. Dover, Mineola, New York

    Google Scholar 

  9. Crank J (1984) Free and moving boundary problems. Oxford University Press, New York

    MATH  Google Scholar 

  10. Cryer CW, Fetter H (1977) The numerical solution of axisymmetric free boundary porous flow well problems using variational inequalities. M.R.C. Techn. Rep. 1761, University of Wisconsin-Madison

  11. Di Nucci C (2011) Steady free-surface flow in porous media: generalized Dupuit-Fawer equations. J Hydraul Res 49(6):821–823

    Article  Google Scholar 

  12. Di Nucci C, Russo Spena A, Todisco MT (2007) On the non-linear unsteady water flow in open channels. Nuovo Cimento B 122(3):237–255

    MathSciNet  ADS  Google Scholar 

  13. Harr ME (1962) Groundwater and seepage. McGraw-Hill, New York

    Google Scholar 

  14. Knight JH (2001) Improving the Dupuit-Forchheimer groundwater free surface approximation. Adv Water Resour 28:1048–1056

    Article  ADS  Google Scholar 

  15. Logan JD (2006) A first course in differential equations. Springer Science+Business Media, New York

    MATH  Google Scholar 

  16. Lorenzi A (1975) Laminar, turbulent, and transition flow in porous sintered media. Meccanica 10(2):75–77

    Article  MathSciNet  Google Scholar 

  17. Marchi E (1963) Contributo allo studio del risalto ondulato. G Genio Civ 101(9):466–476

    Google Scholar 

  18. Matthew GD (1991) Higher order one-dimensional equations of potential flow in open channels. In: Proceedings of the institution of civil engineers, Part 2—Research and theory, vol 91, pp 187–201

    Google Scholar 

  19. Neuman SP, Witherspoon PA (1970) Finite element method analyzing steady seepage with a free surface. Water Resour Res 6(3):889–897

    Article  ADS  Google Scholar 

  20. Rayleigh L (1876) On waves. Philos Mag 5(1):257–279

    Google Scholar 

  21. Roscoe Moss Company (1990) Handbook of ground water development. Wiley, New York

    Book  Google Scholar 

  22. Schneebeli G (1966) Hydraulique souterraine. Eyrolles, Paris

    Google Scholar 

  23. Valiani A, Caleffi V (2003) Effects of free surface curvature on radial, inviscid flows. In: Proceedings international symposium of shallow flows, Delft, The Netherlands, vol 2, pp 199–206

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine Di Nucci.

Appendix

Appendix

To determine the velocity vector field v, the following Picard iteration [3, 15] can be used. This procedure, similar to Matthew’s method [18], is an alternative to the method proposed by Valiani and Caleffi [23]. Valiani and Caleffi’s procedure is based on a power expansion of the harmonic stream function associated with the velocity vector field v [2, 4, 12, 17, 20].

Setting as a first approximation:

$$ v_{r} = \frac{q}{2\pi rh};\qquad v_{z} = 0 $$
(A.1)

the irrotationality condition is automatically satisfied. The solenoidality condition is verified if and only if the following first-order term is considered nil:

$$ \frac{\mathrm{d}h}{\mathrm{d}r} = 0 $$
(A.2)

Equation (A.2) defines the approximation order associated with Eq. (A.1). The second approximation of the velocity vector field v can be deduced by setting:

$$ v_{r} = \frac{q}{2\pi rh};\qquad v_{z} = f_{2} ( r,z ) $$
(A.3)

where f 2(r,z) a function unknown a priori. From the solenoidality condition, it follows that:

$$ \frac{\mathrm{d}f_{2}}{\mathrm{d}z} = \frac{q}{2\pi rh^{2}}\frac{\mathrm{d}h}{\mathrm{d}r} $$
(A.4)

from which:

$$ f_{2} = \frac{q}{2\pi rh^{2}}\frac{\mathrm {d}h}{\mathrm{d}r}z + g_{2} ( r ) $$
(A.5)

The kinematic condition at the base (v z =0 at EA) corresponds to g 2(r)=0. In conclusion, the second approximation of the velocity vector field v is given as follows:

$$ v_{r} = \frac{q}{2\pi rh}; \qquad v_{z} = \frac{q}{2\pi rh^{2}}\frac{\mathrm{d}h}{\mathrm{d}r}z $$
(A.6)

The velocity vector field expressed by Eq. (A.6) is solenoidal. The velocity vector field itself is irrotational if and only if the following second-order terms are considered nil:

$$ \frac{\mathrm{d}}{\mathrm{d}r} \biggl( \frac {1}{rh^{2}}\frac{\mathrm{d}h}{\mathrm{d}r} \biggr) = 0 $$
(A.7)

Equation (A.7) defines the approximation order associated with Eq. (A.6). The third approximation of the velocity vector field v can be deduced by setting:

$$ v_{r} = \frac{q}{2\pi rh} + f_{3} ( r,z ) ; \qquad v_{z} = \frac{q}{2\pi rh^{2}}\frac{\mathrm{d}h}{\mathrm{d}r}z $$
(A.8)

From the irrotationality condition, it follows that:

$$ f_{3} = \frac{q}{2\pi} \frac{z^{2}}{2} \frac{\mathrm{d}}{\mathrm{d}r} \biggl( \frac{1}{rh^{2}}\frac {\mathrm{d}h}{\mathrm{d}r} \biggr) + g_{3} ( r ) $$
(A.9)

Given that:

$$ q = \int_{0}^{h ( r )} 2\pi rv_{r}dz $$
(A.10)

the function g 3(r) takes the following form:

$$ g_{3} = - \frac{q}{2\pi} \frac{h^{2}}{6} \frac{\mathrm{d}}{\mathrm{d}r} \biggl( \frac{1}{rh^{2}}\frac {\mathrm{d}h}{\mathrm{d}r} \biggr) $$
(A.11)

and the third approximation of the velocity vector field v is expressed by Eqs. (3) and (4). This procedure can be extended to any required degree of accuracy. For example, it is easy to verify that the fourth approximation of the velocity vector field v is given as:

$$ v_{r} = \frac{q}{2\pi rh} + \frac{q}{2\pi} \frac{\mathrm{d}}{\mathrm{d}r} \biggl( \frac{1}{rh^{2}}\frac {\mathrm{d}h}{\mathrm{d}r} \biggr) \biggl( \frac{z^{2}}{2} - \frac{h^{2}}{6} \biggr) $$
(A.12)
(A.13)

while the closure hypotheses associated with Eqs. (A.12) and (A.13) are given as follows:

$$ \everymath{\displaystyle }\begin{array}{@{}lll} \frac{\mathrm{d}}{\mathrm{d}r} \biggl[ h\frac{\mathrm{d}}{\mathrm {d}r} \biggl( \frac{1}{rh^{2}}\frac{\mathrm{d}h}{\mathrm{d}r} \biggr)\frac {\mathrm{d}h}{\mathrm{d}r} \biggr] = 0 \cr\noalign{\vspace{6pt}} r \frac{\mathrm{d}}{\mathrm{d}r} \biggl[ \frac{1}{r}\frac{\mathrm {d}}{\mathrm{d}r} \biggl( \frac{1}{rh^{2}}\frac{\mathrm{d}h}{\mathrm{d}r} \biggr) \biggr] = 0 \end{array} $$
(A.14)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Nucci, C. A free boundary problem: steady axisymmetric potential flow. Meccanica 48, 1805–1810 (2013). https://doi.org/10.1007/s11012-013-9703-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-013-9703-1

Keywords

Navigation