Skip to main content
Log in

Application of the Wavelet Multi-resolution Analysis and Hilbert transform for the prediction of gear tooth defects

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In machine defect detection, namely those of gears, the major problem is isolating the defect signature from the measured signal, especially where there is significant background noise or multiple machine components. This article presents a method of gear defect detection based on the combination of Wavelet Multi-resolution Analysis and the Hilbert transform. The pairing of these techniques allows simultaneous filtering and denoising, along with the possibility of detecting transitory phenomena, as well as a demodulation. This paper presents a numerical simulation of the requisite mathematical model followed by its experimental application of acceleration signals measured on defective gears on a laboratory test rig. Signals were collected under various gear operating conditions, including defect size, rotational speed, and frequency bandwidth. The proposed method compares favourably to commonly used analysis tools, with the advantage of enabling defect frequency isolation, thereby allowing detection of even small or combined defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Dalpiaz G, Rivola A, Rubini R (2000) Effectiveness and sensitivity of vibration processing techniques for local fault detection in gears. Mech Syst Signal Process 14(3):387–412

    Article  ADS  Google Scholar 

  2. Toutountzakis T, Tan CK, Mba D (2005) Application of acoustic emission to seeded gear fault detection. NDT E Int 38:27–36

    Article  Google Scholar 

  3. Pachaud C, Salvetat R, Fray C (1997) Crest factor and kurtosis contributions to identify defects inducing periodical impulsive forces. Mech Syst Signal Process 11(6):903–916

    Article  ADS  Google Scholar 

  4. Boulenger A, Pachaud C (1998) Diagnostic vibratoire en maintenance préventive. Dunod, Paris

    Google Scholar 

  5. Ismall FM, Hugh R, Farag O (1995) A statistical index for monitoring tooth cracks in a gearbox. ASME Des Eng Tech Conf 3:1413–1418

    Google Scholar 

  6. Donoho DL (1995) De-noising by soft thresholding. IEEE Trans Inf Theory 41(3):613–627

    Article  MathSciNet  MATH  Google Scholar 

  7. Jing L (2000) Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis. J Sound Vib 234(1):35–148

    ADS  Google Scholar 

  8. Lin J, Zuo MJ (2003) Gearbox fault diagnosis using adaptive wavelet filter. Mech Syst Signal Process 17(6):1259–1269

    Article  ADS  Google Scholar 

  9. Sidahmed M (1990) Détection précoce de défauts dans les engrenages par analyse vibratoire. Rev Fr Méc 4:243–254

    Google Scholar 

  10. Dalpiaz G, Rivola A, Rubini R (1998) Gear fault monitoring: Comparison of vibration analysis techniques. In: Proc of the 3rd int conf on acou and vib surv meth and diag tech, 13–15/10/1998, Senlis, France, pp 623–637

    Google Scholar 

  11. Randall B, Hee J (1981) Cepstrum analysis. Note d’application Brüel & Kjaher

  12. Cousinard O, Marconnet P (2003) Détection de l’endommagement d’un engrenage par l’emploi de l’analyse cepstrale et de la détection d’enveloppe: Application et validation industrielles pour le diagnostic d’un réducteur fonctionnant à faible vitesse. In: 16th Fre Cong Mec Nice, 1–5/09/2003

    Google Scholar 

  13. Capdessus C, Sidahmed M (1991) Analyse des vibrations d’un engrenage: Cepstre corrélation, spectre. Trait Signal 8(5):365–372

    Google Scholar 

  14. Cousinard O, Rousseau P, Bolaers F, Marconnet P (2004) Paramétrage utilisation et apport de l’analyse cepstrale en maintenance prévisionnelle. Méc Ind 5:393–406

    Article  Google Scholar 

  15. Wang WJ, MacFadden PD (1996) Application of wavelets to gearbox vibration signals for fault detection. J Sound Vib 192(5):927–939

    Article  ADS  Google Scholar 

  16. Zheng H, Li Z, Chen X (2002) Gear faults diagnosis based on continuous wavelet transform. Mech Syst Signal Process 16(2–3):447–457

    Article  ADS  Google Scholar 

  17. Meltzera G, Dien NP (2004) Fault diagnosis in gears operating under non-stationary rotational speed using polar wavelet amplitude maps. Mech Syst Signal Process 18:985–992

    Article  ADS  Google Scholar 

  18. Yoshida A, Ohue Y, Ishikawa H (2000) Diagnosis of tooth surface failure by wavelet transform of dynamic characteristics. Tribol Int 33:273–279

    Article  Google Scholar 

  19. Sung CK, Tai HM, Chen CW (2000) Locating defects of gear system by the technique of wavelet transform. Mech Mach Theory 35:1169–1182

    Article  MATH  Google Scholar 

  20. Chinmaya K, Mohanty AR (2006) Monitoring gear vibrations through motor current signature analysis and wavelet transform. Mech Syst Signal Process 20(1):158–187

    Article  ADS  Google Scholar 

  21. Fan X, Zuo MJ (2006) Gearbox fault detection using Hilbert and wavelet packet transform. Mech Syst Signal Process 20:966–982

    Article  ADS  Google Scholar 

  22. Djebala A, Ouelaa N, Hamzaoui N (2007) Optimisation of the wavelet multiresolution analysis of shock signals: application to the signals generated by defective rolling bearings. Méc Ind 4(8):379–389

    Article  Google Scholar 

  23. Djebala A, Ouelaa N, Hamzaoui N (2008) Detection of rolling bearing defects using discrete wavelet analysis. Meccanica 43:339–348

    Article  MATH  Google Scholar 

  24. Fakhfakh T, Chaari F, Haddar M (2005) Numerical and experimental analysis of a gear system with teeth defects. Int J Adv Manuf Technol 25:542–550

    Article  Google Scholar 

  25. Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693

    Article  ADS  MATH  Google Scholar 

  26. Shao Y, Nezu K (2005) Design of mixture de-noising for detecting faulty bearing signals. J Sound Vib 282(3–5):899–917

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Djebala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djebala, A., Ouelaa, N., Benchaabane, C. et al. Application of the Wavelet Multi-resolution Analysis and Hilbert transform for the prediction of gear tooth defects. Meccanica 47, 1601–1612 (2012). https://doi.org/10.1007/s11012-012-9538-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-012-9538-1

Keywords

Navigation