Skip to main content
Log in

Meshfree modelling of fracture—a comparative study of different methods

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Different fracture methods in meshfree methods are studied and compared. Our studies focuses on the elementfree Galerkin (EFG) method though similar results were obtained with SPH and MPM. Three major fracture approaches are tested: Natural fracture, smeared crack method and discrete crack method. In the latter method, the crack is represented as continuous line and as set of discrete crack segment. Natural fracture is a key feature of meshfree methods. In some numerical examples, we will show that natural fracture criterion cannot handle even simple fracture adequately. Moreover, we will show in our numerical examples that smeared crack models can capture global behavior appropriately for simple examples but not for complex examples involving branching cracks. The most accurate methods are discrete fracture methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lucy L (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  ADS  Google Scholar 

  2. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118:179–196

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Eng 20:1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  5. Randles PW, Libersky L (2000) Normalized sph with stress points. Int J Numer Methods Eng 48:1445–1461

    Article  MATH  Google Scholar 

  6. Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139:375–408

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Randles PW, Libersky LD (1997) Recent improvements in sph modeling of hypervelocity impact. Int J Impact Eng 20:525–532

    Article  Google Scholar 

  8. Randles PW, Carney TC, Libersky LD (1995) Sph simulation of fragmentation in the mk82 bomb. Shock Compress Condens Matter 370:331–334

    Article  Google Scholar 

  9. Randles PW, Carney TC, Libersky LD (1995) Calculation of oblique impact and fracture of tungsten cubes using smoothed particle hydrodynamics. Int J Impact Eng 17:661–672

    Article  Google Scholar 

  10. Rabczuk T, Eibl J (2003) Simulation of high velocity concrete fragmentation using sph/mlsph. Int J Numer Methods Eng 56:1421–1444

    Article  MATH  Google Scholar 

  11. Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2d and 3d. Int J Numer Methods Eng 63(11):1559–1582

    Article  MathSciNet  MATH  Google Scholar 

  12. Rabczuk T (2006) Modelling dynamic failure of concrete with meshfree methods. Int J Impact Eng 32(11):1878–1897

    Article  Google Scholar 

  13. Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods based on Lagrangian kernels. Comput Methods Appl Mech Eng 193:1035–1063

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Vignjevic R, Reveles JR, Campbell J (2006) Sph in a total Lagrangian formalism. Comput Model Eng Sci 14(3):181–198

    MathSciNet  Google Scholar 

  15. Belytschko T, Guo Y, Liu WK, Xiao SP (2000) A unified stability analysis of meshfree particle methods. Int J Numer Methods Eng 48:1359–1400

    Article  MathSciNet  MATH  Google Scholar 

  16. Belytschko T, Lu YY (1995) Element-free Galerkin methods for static and dynamic fracture. Int J Solids Struct 32:2547–2570

    Article  MATH  Google Scholar 

  17. Belytschko T, Lu YY, Gu L (1995) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51(2):295–315

    Article  ADS  Google Scholar 

  18. Belytschko T, Tabbara M (1996) Dynamic fracture using element-free Galerkin methods. Int J Numer Methods Eng 39(6):923–938

    Article  MATH  Google Scholar 

  19. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    Article  ADS  MATH  Google Scholar 

  20. Hao S, Liu WK, Klein PA, Rosakis AJ (2004) Modeling and simulation of intersonic crack growth. Int J Solids Struct 41(7):1773–1799

    Article  MATH  Google Scholar 

  21. Krysl P, Belytschko T (1999) The efgm for dynamic propagation of arbitrary three-dimensional cracks. Int J Numer Methods Eng 44(6):767–800

    Article  MATH  Google Scholar 

  22. Belytschko T, Chen H, Xu J, Zi G (2001) Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int J Numer Methods Eng 58(12):1873–1905

    Article  MATH  Google Scholar 

  23. Song J-H, Areais PMA, Belytschko T (2006) A method for dynamic crack and shear band propagation with phantom nodes. Int J Numer Methods Eng 67:868–893

    Article  MATH  Google Scholar 

  24. Rabczuk T, Gracie R, Song J-H, Belytschko T (2010) Immersed particle method for fluid-structure interaction. Int J Numer Methods Eng 81:48–71

    MathSciNet  MATH  Google Scholar 

  25. Ventura G, Xu J, Belytschko T (2002) A vector level set method and new discontinuity approximation for crack growth by efg. Int J Numer Methods Eng 54(6):923–944

    Article  MATH  Google Scholar 

  26. Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free Galerkin methods for crack tip fields. Int J Numer Methods Eng 40:1483–1504

    Article  MathSciNet  Google Scholar 

  27. Belytschko T, Fleming M (1999) Smoothing, enrichment and contact in the element free Galerkin method. Comput Struct 71:173–195

    Article  MathSciNet  Google Scholar 

  28. Zi G, Rabczuk T, Wall W (2007) Extended meshfree methods without branch enrichment for cohesive cracks. Comput Mech 40(2):367–382

    Article  MATH  Google Scholar 

  29. Rabczuk T, Belytschko T (2006) Application of particle methods to static fracture of reinforced concrete structures. Int J Fract 137(14):19–49

    Article  MATH  Google Scholar 

  30. Rabczuk T, Areias P (2006) A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Comput Model Eng Sci 16(2):115–130

    Google Scholar 

  31. Rabczuk T, Bordas S, Zi G (2007) A three dimensional meshfree method for static and dynamic multiple crack nucleation/propagation with crack path continuity. Comput Mech 40(3):473–495

    Article  MATH  Google Scholar 

  32. Rabczuk T, Areias PMA, Belytschko T (2007) A simplified meshfree method for shear bands with cohesive surfaces. Int J Numer Methods Eng 69:993–1021

    Article  MathSciNet  MATH  Google Scholar 

  33. Rabczuk T, Areias PMA, Belytschko T (2007) A meshfree thin shell method for non-linear dynamic fracture. Int J Numer Methods Eng 72(5):524–548

    Article  MathSciNet  MATH  Google Scholar 

  34. Rabczuk T, Belytschko T (2007) A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196(2930):2777–2799

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2008) A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Eng Fract Mech 75:4740–4758

    Article  Google Scholar 

  36. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79:763–813

    Article  MathSciNet  MATH  Google Scholar 

  37. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13):2316–2343

    Article  MATH  Google Scholar 

  38. Beissel S, Belytschko T (1996) Nodal integration in the elementfree Galerking method. Comput Methods Appl Mech Eng 138:49–74

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Vignjevic R, Reveles JR, Campbell J (2006) Sph in a total Lagrangian formalism. Comput Model Eng Sci 14:181–198

    MathSciNet  Google Scholar 

  40. Feldman J, Bonet J (2007) Dynamic refinement and boundary contact forces in sph with applications in fluid flow problems. Int J Numer Methods Eng 72(3):295–324

    Article  MathSciNet  MATH  Google Scholar 

  41. Dyka CT, Ingel RP (1995) An approach for tensile instability in SPH. Comput Struct 57:573–580

    Article  MATH  Google Scholar 

  42. Bazant ZP, Belytschko T (1985) Wave propagation in a strain softening bar: exact solution. J Eng Mech ASCE 11:381–389

    Article  Google Scholar 

  43. Bazant ZP, Oh BH (1983) Crack band theory for fracture in concrete. Mater Struct 16:155–177

    Google Scholar 

  44. Sun Y, Hu YG, Liew KM (2007) A mesh-free simulation of cracking and failure using the cohesive segments method. Int J Eng Sci 45:541–553

    Article  MATH  Google Scholar 

  45. Wang HX, Wang SX (2008) Analysis of dynamic fracture with cohesive crack segment method. Comput Model Eng Sci 35(3):253–274

    MathSciNet  MATH  Google Scholar 

  46. Arrea M, Ingraffea AR Mixed-mode crack propagation in mortar and concrete. Technical report 81-13, Department of Structural Engineering, Cornell University New York, 1982

  47. Xu X-P, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42:1397–1434

    Article  ADS  MATH  Google Scholar 

  48. Zhang YY, Chen L (2008) A simplified meshless method for dynamic crack growth. Comput Model Eng Sci 31:189–199

    MATH  Google Scholar 

  49. Rabczuk T, Zi G (2007) A meshfree method based on the local partition of unity for cohesive cracks. Comput Mech 39(6):743–760

    Article  MATH  Google Scholar 

  50. Sharon E, Gross PSP, Fineberg J (1995) Local crack branching as a mechanism for instability in dynamic fracture. Phys Rev Lett 74:5096–5099

    Article  ADS  Google Scholar 

  51. Ravi-Chandar K (1998) Dynamic fracture of nominally brittle materials. Int J Fract 90:83–102

    Article  Google Scholar 

  52. Rabczuk T, Belytschko T (2007) A three dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196:2777–2799

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Kalthoff JF, Winkler S (1987) Failure mode transition at high rates of shear loading. Int Conf Impact Load Dyn Behav Mater 1:185–195

    Google Scholar 

  54. Rabczuk T, Zi G, Gerstenberger A, Wall WA (2008) A new crack tip element for the phantom node method with arbitrary cohesive cracks. Int J Numer Methods Eng 75:577–599

    Article  MATH  Google Scholar 

  55. Ravi-Chandar K, Lu J, Yang B, Zhu Z (2000) Failure modes transitions in polymers under high strain rate loading. Int J Fract 101:33–72

    Article  Google Scholar 

  56. Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H (2010) A simple and robust three-dimensional cracking-particle method without enrichment. Comput Methods Appl Mech Eng 199:2437–2455

    Article  ADS  MATH  Google Scholar 

  57. Batra RC, Gummalla RR (2000) Effect on material and geometric parameters on deformations near the notch-tip of a dynamically loaded prenotched plate. Int J Fract 101(99–140)

    Google Scholar 

  58. Batra RC, Ravisankar MVS (2000) Three-dimensional numerical simulation of the Kalthoff experiment. Int J Fract 105(161–186)

    Google Scholar 

  59. Zhou M, Ravichandran G, Rosakis A (1996) Dynamically propagating shear bands in impact-loaded prenotched plates—I. J Mech Phys Solids 44:981–1006

    Article  ADS  Google Scholar 

  60. Zhou M, Ravichandran G, Rosakis A (2000) Dynamically propagating shear bands in impact-loaded prenotched plates—II. J Mech Phys Solids 44 (1007–1032)

    Google Scholar 

  61. Rabczuk T, Samaniego E (2008) Discontinuous modelling of shear bands using adaptive meshfree methods. Comput Methods Appl Mech Eng 197:641–658

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Rabczuk T, Song J-H, Belytschko T (2009) Simulations of instability in dynamic fracture by the cracking particles method. Eng Fract Mech 76:730–741

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rajagopal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopal, S., Gupta, N. Meshfree modelling of fracture—a comparative study of different methods. Meccanica 46, 1145–1158 (2011). https://doi.org/10.1007/s11012-010-9367-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-010-9367-z

Keywords

Navigation