Skip to main content
Log in

Entropy generation due to natural convection in a partially heated cavity by local RBF-DQ method

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The Local Radial Basis Function-Differential Quadrature (RBF-DQ) method is applied to two-dimensional incompressible Navier-Stokes equations in primitive form. Numerical results of heatlines and entropy generation due to heat transfer and fluid friction have been obtained for laminar natural convection. The variations of the entropy generation for different Rayleigh numbers are also investigated. Comparison between the present results and previous works demonstrated excellent agreements which verify the accuracy and flexibility of the method in simulating the fluid mechanics and heat transfer problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Be:

Bejan number

c :

Shape parameter

\(\bar{c}\) :

Constant in the transformed form of MQ test functions

g :

Acceleration due to gravity (m s−2)

H :

Length (m)

K :

Thermal conductivity (W m−1 K−1)

Nu:

Nusselt number

P :

Dimensionless pressure

Pr:

Prandtl number

p :

Pressure (Pa)

Ra:

Rayleigh number

S :

Dimensionless entropy generation

T :

Temperature (K)

T 0 :

Bulk temperature (T h +T c )/2 (K)

t :

Time (s)

U,V :

Dimensionless fluid velocities

u,v :

Velocity components in x and y directions (m s−1)

X,Y :

Dimensionless Cartesian coordinates

x,y :

Cartesian coordinates (m)

α :

Thermal diffusivity (m2 s−1)

β :

Volumetric coefficient of thermal expansion (K−1)

μ :

Viscosity (N s m−2)

ν:

Kinematic viscosity (m2 s−1)

ρ :

Fluid density (kg m−3)

τ :

Dimensionless time

φ :

Irreversibility distribution ratio

c :

Cold

f :

Fluid

f.f :

Fluid friction

h :

Hot

h.t :

Heat transfer

l :

Local

t :

Total

References

  1. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318

    Article  MATH  Google Scholar 

  2. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  3. Liu W, Jun S, Zhang Y (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  4. Atluri SN, Zhu T (1998) New meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    Article  MathSciNet  MATH  Google Scholar 

  5. Hildebrand G (2009) Fracture analysis using an enriched meshless method. Meccanica 44:535–545

    Article  MathSciNet  MATH  Google Scholar 

  6. Kansa EJ (1990) Multiquadrics—A scattered data approximation scheme with applications to computational fluid dynamics—I. Surface approximations and partial derivative estimates. Comput Math Appl 19:127–145

    Article  MathSciNet  MATH  Google Scholar 

  7. Kansa EJ (1990) Multiquadrics—A scattered data approximation scheme with applications to computational fluiddynamics—II. Solutions to parabolic, hyperbolic, and elliptic partial differential equations. Comput Math Appl 19:147–161

    Article  MathSciNet  MATH  Google Scholar 

  8. Shu C, Ding H, Yeo KS (2003) Local radial basis function-based differential quadrature method and its application to solve two dimensional incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 192:941–954

    Article  ADS  MATH  Google Scholar 

  9. Ding H, Shu C, Tang DB (2005) Error estimates of local multiquadric-based differential quadrature (LMQDQ) method through numerical experiments. Int J Numer Methods Eng 63:1513–1529

    Article  MATH  Google Scholar 

  10. Shu C, Ding H, Chen HQ, Wang TG (2005) An upwind local RBF-DQ method for simulation of inviscid compressible flows. Comput Methods Appl Mech Eng 194:2001–2017

    Article  ADS  MATH  Google Scholar 

  11. Bellman RE, Kashef BG, Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys 10:40–52

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Shu C, Richards BE (1992) Application of generalized differential quadrature to solve two-dimension incompressible Navier–Stokes equations. Int J Numer Methods Fluids 15:791–798

    Article  MATH  Google Scholar 

  13. Shu C, Wee KHA (2002) Numerical simulation of natural convection in a square cavity by SIMPLE-generalized differential quadrature method. Comput Fluids 31:209–226

    Article  MATH  Google Scholar 

  14. Tezer-Sezgin M (2004) Solution of magnetohydrodynamic flow in a rectangular duct by differential quadrature method. Comput Fluids 33:533–547

    Article  MATH  Google Scholar 

  15. Soheil S, Jalaal M, Bararnia H, Ghasemi E, Ganji DD, Mohammadi F (2010) Local RBF-DQ method for two-dimensional heat conduction problems. Int Commun Heat Mass Transf. doi:10.1016/j.icheatmasstransfer.2010.06.033

    Google Scholar 

  16. Bararnia H, Jalaal M, Ghasemi E, Soheil S., Ganji DD, Mohammadi F (2010) Numerical simulation of Joule heating phenomenon using meshless RBF-DQ method. Int J Thermal Sci. doi:10.1016/j.ijthermalsci.2010.06.008

    Google Scholar 

  17. Nithyadevi N, Sivasankaran S, Kandaswamy P (2007) Buoyancy-driven convection of water near its density maximum with time periodic partially active vertical walls. Meccanica 42:503–510

    Article  MATH  Google Scholar 

  18. Saravanan S, Kandaswamy P (2002) Buoyancy convection in low Prandtl number liquids with large temperature variation. Meccanica 37:599–608

    Article  MATH  Google Scholar 

  19. Ece MC, Elif B (2007) Natural convection flow under a magnetic field in an inclinedsquare enclosure differentially heated on adjacent walls. Meccanica 42:435–449

    Article  MATH  Google Scholar 

  20. Zahmatkesh I (2008) On the importance of thermal boundary conditions in heat transfer and entropy generation for natural convection inside a porous enclosure. Int J Thermal Sci 47:339–346

    Article  Google Scholar 

  21. Abu-Hijleh BAK, Abu-Qudais M, Abu-Nada E (1999) Numerical prediction of entropy generation due to natural convection from a horizontal cylinder. Energy 24:327–333

    Article  Google Scholar 

  22. Magherbi M, Abbassi H, Brahim AB (2003) Entropy generation at the onset of natural convection. Int J Heat Mass Transf 46:3441–3450

    Article  MATH  Google Scholar 

  23. Abu-Hijleh BAK, Heilen WN (1999) Entropy generation due to laminar natural convection over a heated rotating cylinder. Int J Heat Mass Transf 42:4225–4233

    Article  MATH  Google Scholar 

  24. Mahmud S, Island AKS (2003) Laminar free convection and entropy generation inside an inclined wavy enclose. Int J Thermal Sci 42:1003–1012

    Article  Google Scholar 

  25. Famouri M, Hooman K (2008) Entropy generation for natural convection by heated partitions in a cavity. Int Commun Heat Mass Transf 35:492–502

    Article  Google Scholar 

  26. Kimura S, Bejan A (1983) The heatline visualization of convective heat transfer. ASME J Heat Transf 105:916–919

    Article  Google Scholar 

  27. Shan YY, Shu C, Lu ZL (2008) Application of local MQ-DQ method to solve 3D incompressible viscous flows with curved boundary. CMES Comput Model Eng Sci 25:99–113

    Google Scholar 

  28. de Vahl Davis G (1983) Natural convection of air in a square cavity: a benchmark numerical solution. Int J Numer Methods Fluids 3:249–264

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Barari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soleimani, S., Qajarjazi, A., Bararnia, H. et al. Entropy generation due to natural convection in a partially heated cavity by local RBF-DQ method. Meccanica 46, 1023–1033 (2011). https://doi.org/10.1007/s11012-010-9358-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-010-9358-0

Keywords

Navigation