Skip to main content
Log in

Optimal synthesis of function generator of four-bar linkages based on distribution of precision points

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This article describes a method for optimizing the synthesis of a four-bar linkage mechanism to generate a definite mathematic function. In this research, the objective function was defined based on the least squares of error between the generated function and the desired function. Because of non-linearity of the objective function and the constraint, SQP method has been used to find the optimal mechanism. This method of optimization is a gradient-based method and its result is more trustable than heuristic methods. In this study, five precision points have been used to synthesize four-bar linkages; therefore, by using this amount of precision points, a set of non-linear equations was obtained for mechanism synthesis. Unlike the previous researches that dimensional parameters are used as optimization variables, precision points distribution was used in current research. The main innovation of this paper is presentation of some directions to have estimative prediction for distribution of precision points in optimal mechanism which maybe useful for designers. These directions were obtained based on the method that presented in current work and regard to shape of desired function and its first and second derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martínez-Alfaro H (2008) Four-bar mechanism synthesis for n desired path points using simulated annealing. In: Siarry P, Michalewicz Z (eds) Advances in metaheuristics for hard optimization. Springer, Berlin, pp 23–37. doi:10.1007/978-3-540-72960-0_2

    Chapter  Google Scholar 

  2. Freudenstein F (1959) Structural error analysis in plane kinematic synthesis. J Eng Ind Trans ASME 81B:15–22

    Google Scholar 

  3. Freudenstein F, Sandor GN (1959) Synthesis of path-generating mechanisms by means of a programmed digital computer. J Eng Ind 81B:159–168

    Google Scholar 

  4. Fox RL, Willmert KD (1967) Optimum design of curve generating linkages with inequality constraints. J Eng Ind 89B:144–152

    Article  Google Scholar 

  5. Sutherland GH, Siddall JN (1974) Dimensional synthesis of linkages by multifactor optimization. Mech Mach Theory 9:81–95 doi:10.1016/0094-114X(74)90009-3

    Article  Google Scholar 

  6. Levitskii NI, Sarkissyan YL, Gekchian GS (1972) Optimum synthesis of four-bar function generating mechanism. Mech Mach Theory 7(4):387–398. doi:10.1016/0094-114X(72)90048-1

    Article  Google Scholar 

  7. Rao AC (1975) Kinematic design of four-bar function-generators with optimum sensitivity. Mech Mach Theory 10:531–535. doi:10.1016/0094-114X(75)90008-7

    Article  Google Scholar 

  8. Rao AC (1979) Optimum design of four-bar function generators with minimum variance criterion. J Optim Theory Appl 29(1):147–153. doi:10.1007/BF00932641

    Article  MathSciNet  MATH  Google Scholar 

  9. Sun W (1982) Optimum design method for four-bar function generators. J Optim Theory Appl 38(2):287–293. doi:10.1007/BF00934089

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen FY, Chan VL (1974) Dimensional synthesis of mechanisms for function generator using Marguardt’s compromise. J Eng Ind 96:131–137

    Article  Google Scholar 

  11. Guj G, Dong ZY, Giacinto MD (1981) Dimensional synthesis of four bar linkage for function generation with velocity and acceleration constraints. Meccanica 16(4):210–219. doi:10.1007/BF02128323

    Article  MATH  Google Scholar 

  12. Söylemez E, Freudenstein F (1982) Transmission optimization of spatial 4-link mechanisms. Mech Mach Theory 17(4):263–283. doi:10.1016/0094-114X(82)90050-7

    Article  Google Scholar 

  13. Gosselin C, Angeles J (1989) Optimization of planar and spherical function generators as minimum-defect linkages. Mech Mach Theory 24(4):293–307. doi:10.1016/0094-114X(89)90049-9

    Article  Google Scholar 

  14. Angeles J, Alivizatos A, Akhras R (1988) An unconstrained nonlinear least-square method of optimization of RRRR planar path generators. Mech Mach Theory 23(5):343–353. doi:10.1016/0094-114X(88)90048-1

    Article  Google Scholar 

  15. Akhras R, Angeles J (1990) Unconstrained nonlinear least-square optimization of planar linkages for rigid-body guidance. Mech Mach Theory 25(1):97–118. doi:10.1016/0094-114X(90)90110-6

    Article  Google Scholar 

  16. Choi JH, Lee SJ, Choi DH (1998) Tolerance optimization for mechanisms with lubricated joints. Multibody Syst Dyn 2(2):145–168. doi:10.1023/A:1009785211763

    Article  MathSciNet  MATH  Google Scholar 

  17. Yao J, Angeles J (2000) Computation of all optimum dyads in the approximate synthesis of planar linkages for rigid-body guidance. Mech Mach Theory 35(8):1065–1078. doi:10.1016/S0094-114X(99)00069-5

    Article  MATH  Google Scholar 

  18. Vasiliu A, Yannou B (2001) Dimensional synthesis of planar mechanisms using neural networks: application to path generator linkages. Mech Mach Theory 36(2):299–310. doi:10.1016/S0094-114X(00)00037-9

    Article  MATH  Google Scholar 

  19. Yan HS, Soong RC (2001) Kinematic and dynamic design of four-bar linkages by links counterweighing with variable input speed. Mech Mach Theory 36(9):1051–1071. doi:10.1016/S0094-114X(01)00032-5

    Article  MATH  Google Scholar 

  20. Zhou H, EHM Cheung (2002) Analysis and optimal synthesis of adjustable linkages for path generation. Mechatronics 12(7):949–961. doi:10.1016/S0957-4158(01)00034-4

    Article  Google Scholar 

  21. Simionescu PA, Beale D (2002) Optimum synthesis of the four-bar function generator in its symmetric embodiment: the Ackerman steering linkage. Mech Mach Theory 37(12):1487–1504. doi:10.1016/S0094-114X(02)00071-X

    Article  MATH  Google Scholar 

  22. Sánchez Marín FT, Pérez González A (2003) Global optimization in path synthesis based on design space reduction. Mech Mach Theory 38(6):579–594. doi:10.1016/S0094-114X(03)00010-7

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou H, Cheung EHM (2004) Adjustable four-bar linkages for multi-phase motion generation. Mech Mach Theory 39(3):261–279. doi:10.1016/j.mechmachtheory.2003.07.001

    Article  MATH  Google Scholar 

  24. Sancibrian R, Viadero F, García P, Fernández A (2004) Gradient-based optimization of path synthesis problems in planar mechanisms. Mech Mach Theory 39(8):839–856. doi:10.1016/j.mechmachtheory.2004.02.012

    Article  MathSciNet  MATH  Google Scholar 

  25. Erkaya S, Uzmay İ (2008) A neural–genetic (NN–GA) approach for optimising mechanisms having joints with clearance. Multibody Syst Dyn 20(1):69–83. doi:10.1007/s11044-008-9106-6

    Article  MathSciNet  MATH  Google Scholar 

  26. Bulatović RR, Dordević SR (2009) On the optimum synthesis of a four-bar linkage using differential evolution and method of variable controlled deviations. Mech Mach Theory 44(1):235–246. doi:10.1016/j.mechmachtheory.2008.02.001

    Article  MATH  Google Scholar 

  27. Nariman-Zadeh N, Felezi M, Jamali A, Ganji M (2009) Pareto optimal synthesis of four-bar mechanisms for path generation. Mech Mach Theory 44(1):180–191. doi:10.1016/j.mechmachtheory.2008.02.006

    Article  MATH  Google Scholar 

  28. Shen Q, Al-Smadi YM, Martin PJ, Russell K, Sodhi RS (2009) An extension of mechanism design optimization for motion generation. Mech Mach Theory 44(9):1759–1767. doi:10.1016/j.mechmachtheory.2009.03.001

    Article  MATH  Google Scholar 

  29. Acharyya SK, Mandal M (2009) Performance of EAS for four-bar linkage synthesis. Mech Mach Theory 44(9):1784–1794. doi:10.1016/j.mechmachtheory.2009.03.003

    Article  MATH  Google Scholar 

  30. Avilés R, Vallejo J, Fernández de Bustos I, Aguirrebeitia J, Ajuria G (2010) Optimum synthesis of planar linkages using a strain–energy error function under geometric constraints. Mech Mach Theory 45(1):65–79. doi:10.1016/j.mechmachtheory.2009.08.002

    Article  MATH  Google Scholar 

  31. Avilés R, Vallejo J, Aguirrebeitia J, Fernández de Bustos I, Ajuria G (2010) Optimization of linkages for generalized rigid-body guidance synthesis based on finite element models. Finite Elem Anal Des 46(9):721–731. doi:10.1016/j.finel.2010.03.010

    Article  MathSciNet  MATH  Google Scholar 

  32. Peng C, Sodhi RS (2010) Optimal synthesis of adjustable mechanisms generating multi-phase approximate paths. Mech Mach Theory 45(7):989–996. doi:10.1016/j.mechmachtheory.2010.02.005

    Article  MATH  Google Scholar 

  33. Hartenberg RS, Denavit J (1964) Kinematic synthesis of linkages. McGraw-Hill, New York

    MATH  Google Scholar 

  34. Waldron KJ, Kinzel GL (2003) Kinematics, dynamics, and design of machinery. Wiley, New York

    Google Scholar 

  35. Snyman JA (2005) Practical mathematical optimization: an introduction to basic optimization theory and classical and new gradient-based algorithms. Springer, New York

    MATH  Google Scholar 

  36. Biggs MC (1975) Constrained minimization using recursive quadratic programming. In: Dixon LCW, Szergo GP (eds) Towards global optimization. North-Holland, Amsterdam, pp 341–349

    Google Scholar 

  37. Han SP (1977) A globally convergent method for nonlinear programming. J Optim Theory Appl 22(3):297–309. doi:10.1007/BF00932858

    Article  MathSciNet  MATH  Google Scholar 

  38. Powell MJD (1979) Variable metric methods for constrained optimization. In: Glowinski R, Lions JL (eds) Computing methods in applied sciences and engineering. Springer, Berlin, pp 62–72. doi:10.1007/BFb0063615

    Google Scholar 

  39. Powell MJD (1978) A fast algorithm for nonlinearly constrained optimization calculations. In: Watson GA (ed) Numerical analysis. Springer, Berlin, pp 144–157. doi:10.1007/BFb0067703

    Chapter  Google Scholar 

  40. Broyden CG (1970) The convergence of a class of double-rank minimization algorithms. J Inst Math Appl 6(1):76–90. doi:10.1093/imamat/6.1.76

    Article  MathSciNet  MATH  Google Scholar 

  41. Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13(3):317–322. doi:10.1093/comjnl/13.3.317

    Article  MathSciNet  MATH  Google Scholar 

  42. Goldfarb D (1970) A family of variable metric updates derived by variational means. Math Comput 24:23–26

    Article  MathSciNet  MATH  Google Scholar 

  43. Shanno DF (1970) Conditioning of quasi-Newton methods for function minimization. Math Comput 24:647–656

    Article  MathSciNet  MATH  Google Scholar 

  44. Gill PE, Murray W, MA Saunders, Wright MH (1984) Procedures for optimization problems with a mixture of bounds and general linear constraints. ACM Trans Math Softw 10:282–298

    Article  MathSciNet  MATH  Google Scholar 

  45. Gill PE, Murray W, Wright MH (1991) Numerical linear algebra and optimization, vol 1. Addison-Wesley, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Norouzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shariati, M., Norouzi, M. Optimal synthesis of function generator of four-bar linkages based on distribution of precision points. Meccanica 46, 1007–1021 (2011). https://doi.org/10.1007/s11012-010-9357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-010-9357-1

Keywords

Navigation