Skip to main content
Log in

A non isothermal Ginzburg-Landau model for phase transitions in shape memory alloys

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A thermodynamical model for martensitic phase transitions in shape memory alloys is formulated in this paper in the framework of the Ginzburg-Landau approach to phase transitions. A single order parameter is chosen to represent the austenite parent phase and two mirror related martensite variants. A free energy previously proposed in the literature (Levitas et al. in Phys. Rev. B 66:134206, 2002; Phys. Rev. B 66:134207, 2002; Phys. Rev. B 68:134201, 2003) is employed, in its simplest form, as the main constitutive content of the model. In this paper we treat time-dependent Ginzburg-Landau equation as a balance law on the structure order and we couple it to a energy balance equation, thus allowing to account of heat transfer processes. We obtain a coupled thermo-mechanical problem whose consistency with the Second Law is verified.

Finally, a suggestion to expand the proposed model to a full three-dimensional description which accounts for the formation of different martensite variants is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Otsuka K, Wayman CM (1999) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  2. Ölander A (1932) An electrochemical investigation of solid cadmium-gold alloys. J Am Chem Soc 54:3819–3833

    Article  Google Scholar 

  3. Chang LC (1951) Atomic displacements and crystallographic mechanism in diffusionless transformation of gold-cadmium single crystals containing 47.5 atomic percent cadmium. Acta Crystallogr 4:320–324

    Article  Google Scholar 

  4. Buehler WJ, Gilfrich JV, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 345:1475–1477

    Article  ADS  Google Scholar 

  5. Goo RC, Lexcellent C (1997) Micromechanics-based modeling of two way memory effect of a single crystalline shape memory alloy. Acta Mater 45:727–737

    Article  Google Scholar 

  6. Brocca M, Brinson LC, Bazant ZP (2002) Three-dimensional constitutive shape memory alloys based on microplane model. J Mech Phys Solids 50:1051–1077

    Article  MATH  ADS  Google Scholar 

  7. Bhattacharya K (2003) Microstructure of martensite. Oxford University Press, Oxford

    MATH  Google Scholar 

  8. Tanaka K (1986) A thermomechanical sketch of shape memory effect: one dimensional tensile behavior. Res Mech 18:251–263

    Google Scholar 

  9. Liang C, Rogers CA (1990) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 1(2):207–234

    Article  Google Scholar 

  10. Brinson LC (1993) One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4:229–242

    Article  Google Scholar 

  11. Patoor E, Lagoudas DC, Entchev PB, Brinson LC, Gao X (2006) Shape memory alloys, Part I: General properties and modeling of single crystals. Mech Mater 38:391–429

    Article  Google Scholar 

  12. Lagoudas DC, Entchev PB, Popov P, Patoor E, Brinson LC, Gao X (2006) Shape memory alloys, Part II: Modeling of polycrystals. Mech Mater 38:430–462

    Article  Google Scholar 

  13. Falk F (1983) One-dimensional model o shape memory alloys. Arch Mech 35:63–84

    Google Scholar 

  14. Levitas VI, Preston PD, Lee DW (2002) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. I. Austenitemartensite. Phys Rev B 66:134206

    Article  ADS  Google Scholar 

  15. Levitas VI, Preston PD, Lee DW (2002) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. II. Multivariant phase transformations and stress space analysis. Phys Rev B 66:134207

    Article  ADS  Google Scholar 

  16. Levitas VI, Preston PD, Lee DW (2003) Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory. Phys Rev B 68:134201

    Article  ADS  Google Scholar 

  17. Mahapatra DR, Melnik RVN (2006) Finite element analysis of phase transformation dynamics in shape memory alloys with a consistent Landau-Ginzburg free energy model. Mech Adv Mater Struct 13:443–455

    Article  Google Scholar 

  18. Fabrizio M (2006) Ginzburg-Landau equations and first and second order phase transitions. Int J Eng Sci 44:529–539

    Article  MathSciNet  Google Scholar 

  19. Fabrizio M, Giorgi C, Morro A (2006) A thermodynamic approach to non-isothermal phase-field evolution in continuum physics. Physica D 214:144–156

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Fabrizio M, Morro A (1992) Mathematical problems in linear viscoelasticity. SIAM Stud Appl Math, vol 12. SIAM, Philadelphia

    MATH  Google Scholar 

  21. Fried F, Gurtin ME (1993) Continuum theory of thermally induced phase transitions based on an order parameter. Physica D 68:326–343

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Fremond M (2002) Non-smooth thermomechanics. Springer, Berlin

    MATH  Google Scholar 

  23. Levitas VI, Lee D-W, Preston DL (2006) Phase field theory of surface- and size-induced microstructures. Europhys Lett 76:81–87

    Article  ADS  Google Scholar 

  24. Idesman AV, Cho J-Y, Levitas VI (2008) Finite element modelling of dynamics of martensitic phase transitions. Appl Phys Lett 93:043102

    Article  ADS  Google Scholar 

  25. Idesman AV, Levitas VI, Preston DL, Cho J-Y (2005) Finite element simulations of martensitic phase transitions and microstructures based on a strain softening model. J Mech Phys Solids 53:495–523

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fabrizio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daghia, F., Fabrizio, M. & Grandi, D. A non isothermal Ginzburg-Landau model for phase transitions in shape memory alloys. Meccanica 45, 797–807 (2010). https://doi.org/10.1007/s11012-010-9286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-010-9286-z

Keywords

Navigation