Skip to main content
Log in

Antiplane internal crack normal to the edge of a functionally graded piezoelectric/piezomagnetic half plane

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper deals with the antiplane magnetoelectroelastic problem of an internal crack normal to the edge of a functionally graded piezoelectric/piezomagnetic half plane. The properties of the material such as elastic modulus, piezoelectric constant, dielectric constant, piezomagnetic coefficient, magnetoelectric coefficient and magnetic permeability are assumed in exponential forms and vary along the crack direction. Fourier transforms are used to reduce the impermeable and permeable crack problems to a system of singular integral equations, which is solved numerically by using the Gauss-Chebyshev integration technique. The stress, electric displacement and magnetic induction intensity factors at the crack tips are determined numerically. The energy density theory is applied to study the effects of nonhomogeneous material parameter β, edge conditions, location of the crack and load ratios on the fracture behavior of the internal crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Suchtelen J (1972) Product properties: a new application of composite materials. Philips Res Rep 27:28–37

    Google Scholar 

  2. Van Run AMJG, Terrell DR, Scholing JH (1974) An in situ grown eutectic magnetoelectric composite material. J Mater Sci 9:1710–1714

    Article  ADS  Google Scholar 

  3. Nan CW (1994) Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys Rev B 50(9):6082–6088

    Article  ADS  Google Scholar 

  4. Song ZF, Sih GC (2003) Crack initiation behavior in magnetoelectroelastic composite under in-plane deformation. Theor Appl Fract Mech 39:189–207

    Article  Google Scholar 

  5. Sih GC, Song ZF (2003) Magnetic and electric poling effects associated with crack growth in BaTiO3−CoFe2O4 composite. Theor Appl Fract Mech 39:209–227

    Article  Google Scholar 

  6. Sih GC, Chen EP (2003) Dilatational and distortional behavior of cracks in magnetoelectroelastic materials. Theor Appl Fract Mech 40:1–21

    Article  Google Scholar 

  7. Sih GC, Jones R, Song ZF (2003) Piezomagnetic and piezoelectric poling effects on mode I and II crack initiation behavior of magnetoelectroelastic materials. Theor Appl Fract Mech 40:161–186

    Article  Google Scholar 

  8. Gao CF, Tong P, Zhang TY (2003) Interfacial crack problems in magneto-electroelastic solids. Int J Eng Sci 41:2105–2121

    Article  Google Scholar 

  9. Gao CF, Kessler H, Balke H (2003) Crack problems in magnetoelectroelastic solids. Part I: exact solution of a crack. Int J Eng Sci 41:969–981

    Article  MathSciNet  Google Scholar 

  10. Gao CF, Kessler H, Balke H (2003) Crack problems in magnetoelectroelastic solids, part II: general solution of collinear cracks. Int J Eng Sci 41:983–994

    Article  MathSciNet  Google Scholar 

  11. Wang BL, Mai YW (2003) Crack tip field in piezoelectric/piezomagnetic media. Eur J Mech A 22:591–602

    Article  MATH  Google Scholar 

  12. Wang XM, Shen YP (1996) The conservation laws and path-independent integrals with an application for linear electro-magneto-elastic media. Int J Solids Struct 33:865–878

    Article  MATH  Google Scholar 

  13. Spyropoulos CP, Sih GC, Song ZF (2003) Magnetoelectroelastic composite with poling parallel to plane of line crack under out-of-plane deformation. Theor Appl Fract Mech 39:281–289

    Article  Google Scholar 

  14. Zhou ZG, Wang B, Sun YG (2004) Two collinear interface cracks in magneto-electro-elastic composites. Int J Eng Sci 42:1155–1156

    Article  Google Scholar 

  15. Gao CF, Tong P, Zhang TY (2004) Fracture mechanics for a mode III crack in a magnetoelectroelastic solid. Int J Solids Struct 41:6613–6629

    Article  MATH  Google Scholar 

  16. Wang BL, Mai YW (2004) Fracture of piezoelectromagnetic materials. Mech Res Commun 31:65–73

    Article  MATH  Google Scholar 

  17. Kassir MK (1972) A note on the twisting deformation of a non-homogeneous shaft containing a circular crack. Int J Fract Mech 8:325–334

    Article  Google Scholar 

  18. Delale F, Erdogan F (1983) The crack problem for a nonhomogeneous plane. J Appl Mech 50:609–614

    MATH  Google Scholar 

  19. Erdogan F (1985) The crack problem for bonded nonhomogeneous materials under antiplane shear loading. J Appl Mech 52:823–828

    Article  MATH  MathSciNet  Google Scholar 

  20. Erdogan F, Kaya AC, Joseph PF (1991) The crack problem in bonded nonhomogeneous materials. J Appl Mech 58:410–418

    Article  MATH  Google Scholar 

  21. Erdogan F, Kaya AC, Joseph PF (1991) The mode III crack problem in bonded materials with a nonhomogeneous interfacial zone. J Appl Mech 58:419–427

    Article  MATH  Google Scholar 

  22. Choi HJ (1996) Bonded dissimilar strips with a crack perpendicular to the functionally graded interface. Int J Solids Struct 33:4101–4117

    Article  MATH  Google Scholar 

  23. Wu CCM, Kahn M, Moy W (1996) Piezoelectric ceramics with functional gradients: A new application in material design. J Am Ceram Soc 79:809–812

    Article  Google Scholar 

  24. Reimanis IE (2004) Functionally graded material. In: Wessel JK (ed) The handbook of advanced materials: enabling new designs. Wiley, New York, pp 465–486

    Google Scholar 

  25. Watanabe Y, Nakamura Y, Fukui Y, Nakanishi K (1993) A magnetic-functionally graded material manufactured with deformation-induced martensitic transformation. J Mater Sci Lett 12:326–328

    Article  Google Scholar 

  26. Li C, Weng GJ (2002) Antiplane crack problem in functionally graded piezoelectric materials. J Appl Mech 69:481–488

    Article  MATH  ADS  Google Scholar 

  27. Wang BL, Noda N (2001) Thermally induced fracture of a smart functionally graded composite structure. Theor Appl Fract Mech 35:93–109

    Article  Google Scholar 

  28. Ueda S (2003) Crack in functionally graded piezoelectric strip bonded to elastic surface layers under electromechanical loading. Theor Appl Fract Mech 40:225–236

    Article  MathSciNet  Google Scholar 

  29. Wang BL (2003) A mode III crack in functionally graded piezoelectric materials. Mech Res Commun 30:151–159

    Article  MATH  Google Scholar 

  30. Chue CH, Ou YL (2005) Mode III crack problems for two bonded functionally graded piezoelectric materials. Int J Solids Struct 42:3321–3337

    Article  MATH  Google Scholar 

  31. Zhou ZG, Wang B (2004) Two parallel symmetry permeable cracks in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading. Int J Solids Struct 41:4407–4422

    Article  MATH  Google Scholar 

  32. Zhou ZG, Wu LZ, Wang B (2005) The behavior of a crack in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading. Arch Appl Mech 74:526–535

    Article  MATH  Google Scholar 

  33. Feng WJ, Su RKL (2007) Dynamic fracture behaviors of cracks in a functionally graded magneto-electro-elastic plate. Eur J Mech A: Solids 26:363–379

    Article  MATH  Google Scholar 

  34. Feng WJ, Su RKL (2006) Dynamic internal crack problem of a functionally graded magneto-electro-elastic strip. Int J Solids Struct 43:5196–5216

    Article  MATH  Google Scholar 

  35. Pan E, Han F (2005) Exact solution for functionally graded and layered magneto-electro-elastic plates. Int J Eng Sci 43:321–339

    Article  Google Scholar 

  36. Muskhhelishvili NI (1953) Singular Integral Equations. Noordhoff International Publishing, Groningen

    Google Scholar 

  37. Erdogan F, Gupta GD, Cook TS (1973) Numerical solution of singular integral equations. In: Sih GC (ed) Mechanics of fracture 1: method of analysis and solution of crack problem. Noordhoff International Publishing, Leyden, pp 368–425

    Google Scholar 

  38. Rivlin TJ (1974) The Chebyshev polynomials. Wiley, New York

    MATH  Google Scholar 

  39. Pak YE (1990) Crack extension force in a piezoelectric material. J Appl Mech 57:647–653

    Article  MATH  Google Scholar 

  40. Haung JH, Kuo WS (1997) The analysis of piezoelectric/piezomagnetic composite materials containing ellipsoidal inclusion. J Appl Phys 81(3):1378–1386

    Article  ADS  Google Scholar 

  41. Neelakanta PS (1995) Handbook of electromagnetic materials. CRC Press, New York

    Google Scholar 

  42. Pan E (2002) Three-dimensional Green’s function in anisotropic magneto-electro-elastic bimaterials. Z Angrew Math Phys 53:815–838

    Article  MATH  Google Scholar 

  43. Li XF, Duan XY (2001) Closed-form solution for a mode-III crack at the mid-plane of a piezoelectric materials. Mech Res Commun 28:703–710

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Hwei Chue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chue, CH., Hsu, WH. Antiplane internal crack normal to the edge of a functionally graded piezoelectric/piezomagnetic half plane. Meccanica 43, 307–325 (2008). https://doi.org/10.1007/s11012-007-9096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-007-9096-0

Keywords

Navigation