Skip to main content
Log in

Averaging and periodic solutions in the plane and parametrically excited pendulum

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We first approximate the solutions of the nonautonomous oscillating suspension point pendulum equation by the solutions of a second order autonomous differential equation. Using the strict monotonicity of the periodic solutions of the approximating equation, we prove the existence of a large number of subharmonic periodic solutions of the plane pendulum when its point of suspension is excited parametrically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogolioubov NN, Mitropolski YA (1962) Asymptotic methods in the theory of nonlinear oscillations. Gordon and Breach Science Publishers, NY, pp 404–408

  2. Caughey TK (1960) Subharmonic oscillations of a pendulum. Journal of applied mechanics, Vol 27, 1960, Trans. ASME, Vol 82, Series E, pp 754–755

  3. Cheshankov BI (1971). Subharmonic oscillations of a pendulum. PMM 35(2): 343–348

    Google Scholar 

  4. Chester W (1975). The forced oscillations of a simple pendulum. J Inst Math Appl 15: 289–306

    Article  MATH  MathSciNet  Google Scholar 

  5. Dagungi J and Chhatpar CK (1970). Dynamic stability of a pendulum under parametric excitation. Rev Roum Sc Tech-Mech Appl Tome 15(4): 741–763

    Google Scholar 

  6. Diener F and Reeb G (1989). Analyse non standard. Hermann, Paris

    Google Scholar 

  7. Hemp GW, Sethna PR (1968) On dynamical systems with high frequency parametric exitations. Int J Nonlinear Mech 3:351–365

    Google Scholar 

  8. Loud WS (1957). Periodic solutions of \(\ddot{x}+c\dot{x} +g(x)=\varepsilon f(t)\). Publication de l’Université du Minnesota, USA

    Google Scholar 

  9. Lutz R, Goze M (1981) Nonstandard analysis: a practical guide with applications. Lectures notes in mathematical, Vol 881. Springer, Heidelberg

  10. Mazzanti S (1978) Familles de solutions périodiques symétriques d’un système différentiel à coefficients périodiques avec symétries. Thèse, Univ Louis Pasteur, Strasbourg

  11. Morris GR (1955). A differential equation for undamped nonlinear oscillations. I Proc Camb Philos Sov 51: 297–312

    Article  MATH  Google Scholar 

  12. Nelson E (1977). Internal set theory: a new approach to nonstandard analysis. Bull Am Math Soc 83: 1165–1198

    Article  MATH  Google Scholar 

  13. Ness DJ (1967). Small oscillations of a stabilized inverted pendulum. Am J Phys 35: 964–967

    Article  ADS  Google Scholar 

  14. Phelps FM and Hunter JH (1965). An analytical solution of the invertical pendulum. Am J Phys 33: 285–295

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Sanders JA, Verhulst F (1985) Averaging methods in nonlinear dynamical systems. Appl Math Sci 59:41

    Google Scholar 

  16. Schmitt BV and Mazzanti S (1981). Solutions périodiques symétriques de l’équation de duffing sans dissipation. J Dif Equa 42: 199–214

    Article  MATH  MathSciNet  Google Scholar 

  17. Shalak R, Yarymovych MI (1960) Subharmonic oscillations of a pendulum. J Appl Mech Vol 27, Trans ASME, Vol 82, Series E, pp 159–164

  18. Strubble RA (1963) On the subharmonic oscillations of a pendulum. Journal of Applied Mechanics Methods Vol 30, Trans ASME, Vol 85, Series E, pp 301–303

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Mehidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehidi, N. Averaging and periodic solutions in the plane and parametrically excited pendulum. Meccanica 42, 403–407 (2007). https://doi.org/10.1007/s11012-007-9062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-007-9062-x

Keywords

Navigation