Skip to main content
Log in

Pulsatile magneto-biofluid flow and mass transfer in a non-Darcian porous medium channel

  • Original Paper
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A numerical study of pulsatile flow and mass transfer of an electrically conducting Newtonian biofluid via a channel containing porous medium is considered. The conservation equations are transformed and solved under boundary conditions prescribed at both walls of the channel, using a finite element method with two-noded line elements. The influence of magnetic field on the flow is studied using the dimensionless hydromagnetic number, Nm, which defines the ratio of magnetic (Lorentz) retarding force to the viscous hydrodynamic force. A Darcian linear impedance for low Reynolds numbers is incorporated in the transformed momentum equation and a second order drag force term for inertial (Forchheimer) effects. Velocity and concentration profiles across the channel width are plotted for various values of the Reynolds number (Re), Darcy parameter (λ), Forchheimer parameter (Nf), hydro-magnetic number (Nm), Schmidt number (Sc) and also with dimensionless time (T). Profiles of velocity varying in space and time are also provided. The conduit considered is rigid with a pulsatile pressure applied via an appropriate pressure gradient term. Increasing the hydromagnetic number (Nm) from 1 to 15 considerably depresses biofluid velocity (U) indicating that a magnetic field can be used as a flow control mechanism in, for example, medical applications. A rise in Nf from 1 to 20 strongly retards the flow development and decreases the velocity, U, across the width of the channel. The effects of other parameters on the flowfield are also discussed at length. The flow model also has applications in the analysis of electrically conducting haemotological fluids flowing through filtration media, diffusion of drug species in pharmaceutical hydromechanics, and also in general fluid dynamics of pulsatile systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Dimensional:

 

x,y:

Coordinates parallel and transverse to channel walls

t :

Time variable

V i :

Velocity vector

J i :

Current density vector

B k :

Magnetic field vector

P :

Hydrodynamic pressure

τij :

Shear stress tensor

ρ:

Density of bio-fluid

\(\varepsilon\) ijk :

Permutation symbol

ν:

Kinematic viscosity of bio-fluid

b :

Forchheimer geometric parameter

C :

Concentration of species (e.g. Oxygen)

D :

Coefficient of mass diffusivity of species

\(\frac{d}{dt}\) :

Differential with respect to time following the material particle

H :

Width of channel

B 0 :

y-direction component of magnetic field vector

X :

Transformed coordinate parallel to channel walls

Y :

Transformed coordinate transverse to channel walls

U :

Transformed velocity component in X direction

V 0 :

Transpiration velocity

σ:

Electrical conductivity of haemo-fluid

P * :

Transformed hydrodynamic pressure (* dropped for convenience in analysis)

K :

Permeability of the porous medium

T :

Dimensionless time

Φ:

Dimensionless mass transfer (species concentration) function

Re :

Reynolds number

Nm :

Hydromagnetic number

λ:

Darcian porous parameter

Nf :

Forchheimer porous inertial parameter

Sc :

Schmidt number

()s :

Steady component

()o :

Oscillating component

References

  1. Uchida S (1956). The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe. J Appl Math Phys (ZAMP) 7:403–422

    Article  MATH  MathSciNet  Google Scholar 

  2. Wornersley JR (1958). Oscillatory flow in arteries II: the reflection of the pulse wave at junctions and rigid inserts in the arterial system. Phys Med Biol 2:313–323

    Article  Google Scholar 

  3. Womersley JR (1958). Oscillatory flow in arteries III: flow and pulse-velocity formulae for a liquid whose viscosity varies with frequency. Phys Med Biol 2: 374–382

    Article  Google Scholar 

  4. Skalak R (1966) Wave propagation in blood flow. In: Biomechanics symposium ASME, New York, pp 20–46

  5. Hung TK, Tsai MC (1997). Kinematic and dynamic characteristics of pulsatile flows in stenotic vessels. ASCE J Eng Mech 123(3):247–259

    Article  Google Scholar 

  6. Hung TK, Cheng WS, Li DF (1986) Pulsatory entry flow in a curved tube. In: Arndt REA, Stefan HG, Farell C, Peterson SM (eds) Advances in aerodynamics, fluid mechanics and hydraulics ASCE, USA, pp 669–676

  7. Hung TK, Tsai MC (1997). Kinematic and dynamic characteristics of pulsatile flows in stenotic vessels. ASCE J Eng Mech 123(3):247–259

    Article  Google Scholar 

  8. Hung TK (2004) Private Communication to O. A. Bég on computational pulsatile flow simulation

  9. Berger S (1996). Calculation of the magnetization distribution for fluid flow in curved vessels. Magn Reson Med 35:577–584

    Google Scholar 

  10. Berger S (1998). Numerical simulation of the flow in the carotid bifurcation. Theor Comput Fluid Dyn 10: 239–248

    Article  MATH  Google Scholar 

  11. Berger S (2000). Influence of stenosis morphology on flow through severely stenotic vessels: implications for plaque rupture. J Biomech 33:443–455

    Article  Google Scholar 

  12. Berger S (2002). Numerical analysis of flow through a severely stenotic carotid artery bifurcation. ASME J Biomech Eng 124:9–20

    Article  Google Scholar 

  13. Berger S, JOU L-D (1997) Pulsatile flow through the carotid bifurcation, 15th Int. conf. numerical methods in fluid dynamics. Springer-Verlag, pp. 286–291

  14. Zamir M (1998). Mechanics of blood supply to the heart: wave reflection effects in a right coronary artery. Proc R Soc Lond B 265:439–444

    Article  Google Scholar 

  15. Zamir M (2000). The physics of pulsatile flow. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  16. Haslam M, Zamir M (1998). Pulsatile flows in tubes of elliptic cross-sections. Ann Biomed Eng 26(5): 780–787

    Article  Google Scholar 

  17. Majdalani J, Roh TS (2000). The oscillatory channel flow with large wall injection. Proc R Soc A 456:1625–1657

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Majdalani J (2001). The oscillatory channel flow with arbitrary wall injection. J Appl Math Phys (ZAMP) 52(1):33–61

    Article  MATH  MathSciNet  Google Scholar 

  19. Majdalani J, Flandro GA (2002). The oscillatory pipe flow with arbitrary wall injection. Proc R Soc A 458:1621–1651

    Article  MATH  ADS  Google Scholar 

  20. Muntges DE, Majdalani J (2000) Pulsatory channel flow for an arbitrary volumetric flow rate. AIAA Pap 2002–2856

  21. Keltner JR, Roos MS, Brakeman PR, Budinger TF (1990). Magnetohydrodynamics of blood flow. Mag Reson Med J 16(1):139–149

    Article  Google Scholar 

  22. Sud VK, Sekhon GS (2003). Blood flow through the human arterial system in the presence of a steady magnetic field. Biophys J 84:2638–2645

    Article  Google Scholar 

  23. Rao AR, Desikachar KS (1987). Diffusion in hydromagnetic oscillatory flow through a porous channel. ASME J Appl Mech 54:742

    Article  Google Scholar 

  24. Bég OA, Takhar HS, Bhargava R, Rawat S, Bég TA (2006a) Biomagnetic Newtonian flow in a two-dimensional porous medium, submitted

  25. Bég OA, Takhar HS, Bhargava R, Rawat S, Bég TA (2006b) Pulsatile MHD flow and mass transnfer in a non-Darcian channel using the biviscosity non-Newtonian model: finite element solutions, submitted

  26. Bég OA, Takhar HS, Bég TA, Chamkha AJ, Nath G, Majeed R (2005). Modeling convection heat transfer in a rotating fluid in a thermally-stratified high-porosity medium: Numerical finite difference solutions. Int J Fluid Mech Res 32(4):383–401

    Article  MathSciNet  Google Scholar 

  27. Kukura J et al (2002) Understanding pharmaceutical flows. Pharm Technol 48–72

  28. Madjalani J, Chibli HA (2002) Pulsatory channel flows with arbitrary pressure gradients. AIAA 3rd Fluid Mechanics Meeting, St. Louis, MO, USA 24–26 June

  29. Cramer KC, Pai S (1973). Magnetofluid dynamics for engineers and applied physicists. MacGraw-Hill, New York

    Google Scholar 

  30. Mazumder BS, Das SK (1992). Effect of boundary on solute dispersion in pulsatile flow through a tube. J Fluid Mech 239:523–549

    Article  ADS  Google Scholar 

  31. Bathe KJ (1996). Finite element procedures. Prentice-Hall, NJ

    Google Scholar 

  32. Bég T, Bég OA (2003) Chemically-decaying drug transport across membranes. Technical Report, Bradford University Science Park, Listerhills, Bradford, UK

  33. Sherman A, Sutton EW (1961). Magneto-hydrodynamics. Evanston, IL, USA

    Google Scholar 

  34. Dybbs A, Edwards RV (1984) A new look at porous media fluid mechanics: Darcy to Turbulent. In: Bear J, Corapcioglu MY (eds) Fundamentals of transport phenomena in porous media NATO ASI series E: applied sciences, vol 82.

  35. Khaled ARA, Vafai K (2003). The role of porous media in modeling flow and heat transfer in biological tissues. Int J Heat Mass Transf 46:4989–5003

    Article  MATH  Google Scholar 

  36. Vafai K, Tien CL (1981). Boundary and inertial effects on flow and heat transfer in porous media. Int J Heat Mass Transf 24:195–203

    Article  MATH  Google Scholar 

  37. Gebhart B, Jaluria Y, Mahajan RL, Sammakia B (1998). Buoyancy-induced flows and transport. Hemisphere, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Anwar Bég.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhargava, R., Rawat, S., Takhar, H.S. et al. Pulsatile magneto-biofluid flow and mass transfer in a non-Darcian porous medium channel. Meccanica 42, 247–262 (2007). https://doi.org/10.1007/s11012-007-9052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-007-9052-z

Keywords

Navigation