Skip to main content
Log in

Analysis on Fractal Objects

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Irregular objects are often modeled by fractals sets. In order to formulate partial differential equations on these nowhere differentiable sets the development of a “new analysis” is necessary. With the help of the model case of the Sierpinski gasket the definition of energy forms and Laplacians on self-similar finitely ramified fractals is explained. Moreover, some results for certain classes of non-self-similar fractals are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow, M., ‘Diffusions on fractals’. Lect. Notes Noth. 1690 (1998).

  2. M. Barlow R. Bass (1999) ArticleTitlemotion and harmonic analysis on Sierpinski carpets’ Cand. J. Math. 51 673–744 Occurrence Handle1701339 Occurrence Handle0945.60071

    MathSciNet  MATH  Google Scholar 

  3. Capitanelli, R., ‘Lagrangians on homogeneous spaces’, PhD Thesis, Univ. di Roma “La Sapienza”, 2001.

  4. K.J. Falconer (1985) The geometry of fractal sets Cambridge Univerity Press Cambridge Occurrence Handle0587.28004

    MATH  Google Scholar 

  5. U. Freiberg (2003) ArticleTitle‘Analytic properties of measure geometric Krein–Feller-operators on the real line’ Math. Nach. 260 34–47 Occurrence Handle1055.28003 Occurrence Handle2017701

    MATH  MathSciNet  Google Scholar 

  6. U. Freiberg (2004) ArticleTitle‘Dirichlet forms on fractal subsets of the real line’ R. Anal. Exchange. 30 IssueID2 589–604 Occurrence Handle2177421

    MathSciNet  Google Scholar 

  7. U. Freiberg (2005) ArticleTitle‘Spectral asymptotics of generalized measure geometric Laplacians on Cantor like sets’ Forum Math. 17 87–104 Occurrence Handle1135.28302 Occurrence Handle2110540

    MATH  MathSciNet  Google Scholar 

  8. U.R. Freiberg M.R. Lancia (2004) ArticleTitle‘Energy form on a closed fractal curve’ Z. Anal. Anwendungen. 23 IssueID1 115–137 Occurrence Handle2066098 Occurrence Handle1069.31004

    MathSciNet  MATH  Google Scholar 

  9. Freiberg, U.R. and Lancia, M.R. ‘Energy forms on conformal images of nested fractals’. preprint MeMoMat. 15, (2004)

  10. Freiberg, U. R. and Lancia, M. R. Can one hear the curvature of a fractal? S asymptotics of fractal Laplace Beltrami-operators. in preparation.

  11. Fukushima, M., Oshima, Y. and Takeda, M. Dirichlet forms and symmetric Markov processes, in: Bauer Kazdan, Zehnder (eds) de Gruyter Studies in Mathematics, Vol. 19, Berlin, 1994.

  12. Goldstein, S. Random walks and diffusions on fractals. in Percolation theory and ergodic theory of infinite particle systems, Minneapolis, Minn. 1984/85, 121–129; IMA Vol. Math. Appl. 8, Springer, New York, Berlin, 1987.

  13. Hino, M.(2005). ‘Singularity of energy measures on self similar sets’, preprint

  14. J.E. Hutchinson (1981) ArticleTitle‘Fractals and self similarity’ Indiana Univ. Math. J. 30 713–747 Occurrence Handle10.1512/iumj.1981.30.30055 Occurrence Handle0598.28011 Occurrence Handle625600

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Jonsson (1996) ArticleTitle‘Brownian motion on fractals and function spaces’ Math. Z 222 495–504 Occurrence Handle0863.60079 Occurrence Handle1400205

    MATH  MathSciNet  Google Scholar 

  16. Jonnson, A. and Wallin, H.‘Function spaces on subsets of R n’, Math. Rep. Ser. 2 1 (1984).

  17. Kato, T. Pertubation theory for linear operators. 2nd edn, Springer, 1977.

  18. J. Kigami (1989) ArticleTitle‘A harmonic calculus on the Sierpinski spaces’ Jpn. J. Appl. Math. 6 259–290 Occurrence Handle0686.31003 Occurrence Handle1001286

    MATH  MathSciNet  Google Scholar 

  19. J. Kigami (1993) ArticleTitle‘Harmonic calculus on p.c.f. self–similar sets’ Trans. Am. Math. Soc. 335 721–755 Occurrence Handle0773.31009 Occurrence Handle1076617

    MATH  MathSciNet  Google Scholar 

  20. J. Kigami (2001) Analysis on fractals Cambridge University Press Cambridge Occurrence Handle0998.28004

    MATH  Google Scholar 

  21. J. Kigami M.L. Lapidus (1993) ArticleTitleWeyl’s problem for the spectral distribution of Laplacians on p.c.f. self–similar fractals’ Commun. Math. Phys. 158 93–125 Occurrence Handle10.1007/BF02097233 Occurrence Handle1243717 Occurrence Handle0806.35130 Occurrence Handle1993CMaPh.158...93K

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Kusuoka, S. Diffusion processes on nested fractals. Lec. Notes in Math. 1567, Springer, 1993.

  23. M.R. Lancia (2003) ArticleTitle‘Second order transmission problems across a fractal surface’ Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 27 IssueID1 191–213 Occurrence Handle2056419

    MathSciNet  Google Scholar 

  24. Lindstrøm, T. Brownian Motion on Nested Fractals’, Memoirs Amer. Math. Soc. 420 (1990).

  25. J.-U. Löbus (1991) ArticleTitle‘Generalized second order differential operators’ Math. Nachr. 152 229–245 Occurrence Handle0731.60068 Occurrence Handle1121236

    MATH  MathSciNet  Google Scholar 

  26. J.-U. Löbus (1993) ArticleTitle‘Constructions and generators of one-dimensional quasidiffusions with applications to selfaffine diffusions and Brownian motion on the Cantor set. Stochast’ Stochast. Rep. 42 93–114 Occurrence Handle0805.60071

    MATH  Google Scholar 

  27. B.B. Mandelbrot (1982) The fractal geometry of nature Freeman San Fransisco Occurrence Handle0504.28001

    MATH  Google Scholar 

  28. P.A.P. Moran (1946) ArticleTitle‘Additive functions of intervals and Hausdorff measure’ Proc. Camb. Phil. Soc. 42 15–23 Occurrence Handle0063.04088 Occurrence Handle10.1017/S0305004100022684

    Article  MATH  Google Scholar 

  29. U. Mosco (1994) ArticleTitle‘Composite media and asymptotic Dirichlet forms’ J. Funct. Anal. 123 IssueID2 368–421 Occurrence Handle10.1006/jfan.1994.1093 Occurrence Handle0808.46042 Occurrence Handle1283033

    Article  MATH  MathSciNet  Google Scholar 

  30. Mosco, U. ‘Lagrangian metrics on fractals’, in: R. Spigler and S. Venakides (eds) Proc. Symp. Appl. Math, Vol. 54, Amer. Math. Soc., (1998) pp. 301–323.

  31. U. Mosco (2002) ArticleTitle‘Energy functionals on certain fractal structures’ J. Convex Anal. 9 581–600 Occurrence Handle1018.28005 Occurrence Handle1970574

    MATH  MathSciNet  Google Scholar 

  32. Mosco, U. Highly conductive fractal layers., Proc. Conf. Whence the boundary conditions in modern physics? Acad. Lincei, Rome, (2002).

  33. Mosco, U. ‘An elementary introduction to fractal analysis’, Nonlinear analysis and applications to physical sciences, Italia, Springer, Milan, 2004, pp. 51–90.

  34. Triebel, H. ‘Fractals and spectra related to Fourier analysis and function spaces. Monographs in Mathematics, Vol. 91, Birkhäuser, Basel, 1997

  35. H. Weyl (1915) ArticleTitle‘Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalteten elastischen Körpers’ Rend. Cir. Mat. Palermo. 39 1–50 Occurrence HandleJFM 45.1016.02

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. R. Freiberg.

Additional information

2000 Math. Subj. Class.: Primary 28A80, 35J15; Secondary 31C25, 35P05

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freiberg, U.R. Analysis on Fractal Objects. Meccanica 40, 419–436 (2005). https://doi.org/10.1007/s11012-005-2107-0

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-005-2107-0

Keywords

Navigation