Skip to main content
Log in

Venlafaxine inhibits naloxone-precipitated morphine withdrawal symptoms: Role of inflammatory cytokines and nitric oxide

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Opioid-induced neuroinflammation plays a role in the development of opioid physical dependence. Moreover, nitric oxide (NO) has been implicated in several oxidative and inflammatory pathologies. Here, we sought to determine whether treatment with venlafaxine during the development of morphine dependence could inhibit naloxone-precipitated withdrawal symptoms. The involvement of neuro-inflammation related cytokines, oxidative stress, and L-arginine (L-arg)-NO pathway in these effects were also investigated. Mice received morphine (50 mg/kg/daily; s.c.), plus venlafaxine (5 and 40 mg/kg, i.p.) once a day for 3 consecutive days. In order to evaluate the possible role of L-arg-NO on the effects caused by venlafaxine, animals received L-arg, L-NAME or aminoguanidine with venlafaxine (40 mg/kg, i.p.) 30 min before each morphine injection for 3 consecutive days. On 4th day of experiment, behavioral signs of morphine-induced physical dependence were evaluated after i.p. naloxone injection. Then, brain levels of tissue necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), brain-derived neurotrophic factor (BDNF), NO and oxidative stress factors including; total thiol, malondialdehyde (MDA) contents and glutathione peroxidase (GPx) activity were determined. Co-administration of venlafaxine (40 mg/kg) with morphine not only inhibited the naloxone-precipitated withdrawal signs including jumping and weight loss, but also reduced the up-regulation of TNF-α, IL-1β, IL-6, NO and MDA contents in mice brain tissue. However, repeated administration of venlafaxine inhibited the decrease in the brain levels of BDNF, total thiol and GPx. Pre-administration of L-NAME and aminoguanidine improved, while L-arg antagonized the venlafaxine-induced effects. These results provide evidences that venlafaxine could be used as a candidate drug to inhibit morphine withdrawal through the involvement of inflammatory cytokines and l-arginine-NO in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aloe L, Properzi F, Probert L, Akassoglou K, Kassiotis G, Micera A, Fiore M (1999) Learning abilities, NGF and BDNF brain levels in two lines of TNF-alpha transgenic mice, one characterized by neurological disorders, the other phenotypically normal. Brain Res 840:125–137

    CAS  PubMed  Google Scholar 

  • Cami J, Farre M (2003) Drug addiction. N Engl J Med 349:975–986

    CAS  PubMed  Google Scholar 

  • Cao JL, Ding HL, He JH, Zhang LC, Duan SM, Zeng YM (2005) The spinal nitric oxide involved in the inhibitory effect of midazolam on morphine-induced analgesia tolerance. Pharmacol Biochem Behav 80:493–503

    CAS  PubMed  Google Scholar 

  • Carrasco MA, Castro P, Sepulveda FJ, Tapia JC, Gatica K, Davis MI, Aguayo LG (2007) Regulation of glycinergic and GABAergic synaptogenesis by brain-derived neurotrophic factor in developing spinal neurons. Neuroscience 145:484–494

    CAS  PubMed  Google Scholar 

  • Cegielska-Perun K, Bujalska-Zadrozny M, Makulska-Nowak HE (2012) Modification of Morphine Analgesia by Venlafaxine in Diabetic Neuropathic Pain Model. Pharmacol Rep 64:1267–1275

    CAS  PubMed  Google Scholar 

  • Cegielska-Perun K, Bujalska-Zadrożny M, Tatarkiewicz J, Gąsińska E, Elżbieta H, Nowak M (2013) Venlafaxine and neuropathic pain. Pharmacology 91:69–76

    CAS  PubMed  Google Scholar 

  • Cooke JD, Grover LM, Spangler PR (2009) Venlafaxine treatment stimulates expression of BDNF protein in frontal cortex and inhibits long-term potentiation in hippocampus. Neuroscience 162:1411–1419

    CAS  PubMed  Google Scholar 

  • Dambisya YM, Lee TL (1996) Role of nitric oxide in the induction and expression of morphine tolerance and dependence in mice. Br J Pharmacol 117:914–918

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE (1991) Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174:1209–1220

    PubMed  Google Scholar 

  • Dhir A, Kulkarni SK (2007) Involvement of l-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of venalafaxine in mice. Prog Neuro-Psychopharmacol Bio Psychiatry 31:921–925

    CAS  Google Scholar 

  • Dias BG, Banerjee SB, Duman RS, Vaidya VA (2003) Differential regulation of brain derived neurotrophic factor transcripts by antidepressant treatmentsin the adult rat brain. Neuropharmacol 45:553–563

    CAS  Google Scholar 

  • Eigler A, Sinha B, Endres S (1993) Nitric oxide-releasing agents enhance cytokine-induced tumor necrosis factor synthesis in human mononuclear cells. Biochem Biophys Res Commun 196:494–501

    CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    CAS  PubMed  Google Scholar 

  • Eren I et al (2007) Venlafaxine modulates depression-induced oxidative stress in brain and medulla of rat. Neurochem Res 32:497–505

    CAS  PubMed  Google Scholar 

  • Feng P, Meissler JJ, Adler MW, Eisenstein TK (2005) Morphine withdrawal sensitizes mice to lipopolysaccharide: elevated TNF-a and nitric oxide with decreased IL12. J Neuroimmunol 164:57–65

    CAS  PubMed  Google Scholar 

  • Galea E, Regunathan S, Eliopoulos V, Feinstein DL, Reis DJ (1996) Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine. Biochem J 316:247–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaur V, Kumar A (2010) Protective effect of desipramine, venlafaxine and trazodone against experimental animal model of transient global ischemia: Possible involvement of NO–cGMP pathway. Brain Res 1353:204–212

    CAS  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138

    CAS  Google Scholar 

  • Heales SJ, Bolaños JP, Stewart VC, Brookes PS, Land JM, Clark JB (1999) Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1410:215–228

    CAS  PubMed  Google Scholar 

  • Hutchinson MR et al (2008) Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav Immun 22:1178–1189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hutchinson MR, Shavit Y, Grace PM, Rice KC, Maier SF, Watkins LR (2011) Exploring the neuroimmunopharmacology of opioids: an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev 63:772–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SM, Fleming WW (1989) Mechanisms of cellular adaptive sensitivity changes: applications to opioid tolerance and dependence. Pharmacol Rev 41:435–488

    CAS  PubMed  Google Scholar 

  • Kolesnikov YA, Pick CG, Ciszewska G, Pasternak GW (1993) Blockade of tolerance but not to k opioids by a nitric oxide synthase inhibitor. Proc Natl Acad Sci USA 90:5162–5166

    CAS  PubMed  Google Scholar 

  • Krass M, Wegener G, Vasar E, Volke V (2011) The antidepressant action of imipramine and venlafaxine involves suppression of nitric oxide synthesis. Behav Brain Res 218:57–63

    CAS  PubMed  Google Scholar 

  • Kubera M, Lin AH, Kenis G, Bosmans E, van Bockstaele D, Maes M (2001) Anti-Inflammatory effects of antidepressants through suppression of the interferongamma/ interleukin-10 production ratio. J Clin Psychopharmacol 21:199–206

    CAS  PubMed  Google Scholar 

  • Kumar S, Bhargava HN (1997) Time course of the changes in central nitric oxide synthase activity following chronic treatment with morphine in the mouse: reversal by naltrexone. Gen Pharmacol 29:223–227

    CAS  PubMed  Google Scholar 

  • Kumar A, Garg R, Gaur V, Kumar P (2009) Nitric oxide mechanism in protective effect of imipramine and venlafaxine against acute immobilization stress-induced behavioral and biochemical alteration in mice. Neurosci Lett 467:72–75

    CAS  PubMed  Google Scholar 

  • Kumar A, Garg R, Gaur V, Kumar P (2010) Venlafaxine involves nitric oxide modulatory mechanism in experimental model of chronic behavior despair in mice. Brain Res 1311:73–80

    CAS  PubMed  Google Scholar 

  • Li Z, Qi D, Chen J, Zhang C, Yi Z, Yuan C, Wang Z, Hong W, Yu S, Cui D, Fang Y (2013) Venlafaxine inhibits the upregulation of plasma tumor necrosis factor-alpha (TNF-α) in the Chinese patients with major depressive disorder: a prospective longitudinal study. Psychoneuroendocrinology 38(1):107–114

    CAS  PubMed  Google Scholar 

  • Madrigal JL, Moro MA, Lizasoain I, Lorenzo P, Castrillo A, Boscá L, Leza JC (2001) Inducible nitric oxide synthase expression in brain cortex after acute restraint stress is regulated by nuclear factor kappaB-mediated mechanisms. J Neurochem 76:532–538

    CAS  PubMed  Google Scholar 

  • Mansouri MT, Naghizadeh B, Ghorbanzadeh B (2014) Ellagic acid enhances morphine analgesia and attenuates the development of morphine tolerance and dependence in mice. Eur J Pharmacol 741:272–280

    CAS  PubMed  Google Scholar 

  • Mansouri M, Naghizadeh B, Ghorbanzadeh B, Alboghobeish S, Houshmand G, Amirgholami N (2018) Venlafaxine attenuates the development of morphine tolerance and dependence: role of L-arginine/nitric oxide/cGMP pathway. Endocr Metab Immune Disord 18:362–370

    CAS  Google Scholar 

  • Marcinkiewicz J, Grabowska A, Chain B (1995) Nitric oxide up-regulates the release of inflammatory mediators by mouse macrophages. Eur J Immunol 25:947–951

    CAS  PubMed  Google Scholar 

  • Mizuno K, Carnahan J, Nawa H (1994) Brain-derived neurotrophic factor promotes differentiation of striatal GABAergic neurons. Dev Biol 165:243–256

    CAS  PubMed  Google Scholar 

  • Mori T, Ito S, Matsubayashi K, Sawaguchi T (2007) Comparison of nitric oxide synthase inhibitors, phospholipase A2 inhibitor and free radical scavengers as attenuators of opioid withdrawal syndrome. Behav Pharmacol 18:725–729

    CAS  PubMed  Google Scholar 

  • Naghizadeh B, Mansouri MT, Ghorbanzadeh B, Farbood Y, Sarkaki A (2013) Protective effects of oral crocin against intracerebroventricular streptozotocin-induced spatial memory deficit and oxidative stress in rats. Phytomedicine 20:537–542

    CAS  PubMed  Google Scholar 

  • Ozek M, Uresin Y, Gungor M (2003) Comparison of the effects of specific and nonspecific inhibition of nitric oxide synthase on morphine analgesia, tolerance and dependence in mice. Life Sci 72:1943–1951

    CAS  PubMed  Google Scholar 

  • Peregud DI, Yakovlev AA, Stepanichev MY, Onufriev MV, Panchenko LF, Gulyaeva NV (2016) Expression of BDNF and TrkB Phosphorylation in the Rat Frontal Cortex During Morphine Withdrawal are NO Dependent. Cell Mol Neurobiol 36:839–849

    CAS  PubMed  Google Scholar 

  • Piletz JE, Halaris A, Iqbal O, Hoppensteadt D, Fareed J, Zhu H, Sinacore J, Devane CL (2009) Pro-inflammatory biomakers in depression: treatment with venlafaxine. World J Biol Psychiatry 10(4):313–323

    PubMed  Google Scholar 

  • Redrobe JP, Bourin M, Colombel MC, Baker GB (1998) Dose-dependent noradrenergic and serotonergic properties of venlafaxine in animal models indicative of antidepressant activity. Psychopharmacology 138:1–8

    CAS  PubMed  Google Scholar 

  • Rogoz Z, Skuza G, Legutko B (2005) Repeated treatment with mirtazapine induces brain-derived neurotrophic factor gene expression in rats. J Physiol Pharmacol 56:661–671

    CAS  PubMed  Google Scholar 

  • Rosland JH, Hunskaar S, Hole K (1988) Modification of the antinociceptive effect of morphine by acute and chronic administration of clomipramine in mice. Pain 33:349–355

    CAS  PubMed  Google Scholar 

  • Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ (2009) Neurotrophic factors and structural plasticity in addiction. Neuropharmacology 56:73–82

    CAS  PubMed  Google Scholar 

  • Schreiber S, Backer MM, Pick CG (1999) The antinociceptive effect of venlafaxine in mice is mediated through opioid and adrenergic mechanisms. Neurosci Lett 273:85–88

    CAS  PubMed  Google Scholar 

  • Skrabalova J, Drastichova Z, Novotny J (2013) Morphine as a Potential Oxidative Stress-Causing Agent. Mini Rev Org Chem 10:367–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa AM, Prado WA (2001) The dual effect of a nitric oxide donor in nociception. Brain Res 897:9–19

    CAS  PubMed  Google Scholar 

  • Sumpton JE, Moulin DE (2001) Treatment of neuropathic pain with venlafaxine. Ann Pharmacother 35:557–559

    CAS  PubMed  Google Scholar 

  • Thorat SN, Bajarel M, Matwyshyn GA, Bhargava HN (1994a) Comparative effects of NG-monomethyl-L-arginine and MK-801 on the abstinence syndrome in morphine-dependent mice. Brain Res 642:153–159

    CAS  PubMed  Google Scholar 

  • Thorat SN, Barjavel MJ, Matwyshyn GA, Bhargava HN (1994b) Comparative effects of NG-monomethyl-L-arginine and MK-801 on the abstinence syndrome in morphine-dependent mice. Brain Res 642:153–159

    CAS  PubMed  Google Scholar 

  • Vollmar P, Haghikia A, Dermietzel R, Faustmann PM (2008) Venlafaxine exhibits an anti-inflammatory effect in an inflammatory co-culture model. Int J Neuropsychopharmacol 11:111–117

    CAS  PubMed  Google Scholar 

  • Wang HL, Zhao Y, Xiang XH, Wang HS, Wu WR (2004) Blockade of ionotropic glutamatergic transmission in the ventral tegmental area attenuates the physical signs of morphine withdrawal in rats. Prog Neuropsychopharmacol Biol Psychiatry 28:1079–1087

    CAS  PubMed  Google Scholar 

  • Way EL, Loh HH, Shen F (1969) Simultaneous quantitative assessment of morphine tolerance and physical dependence. J Pharmacol Exp Ther 167:1–8

    CAS  PubMed  Google Scholar 

  • Zarrindast MR, Dinkoub Z, Homayoun H, Bakhtiarian A, Khavandgar S (2002) Dopamine receptor mechanism(s) and morphine tolerance in mice. J Psychopharmacol 16:261–266

    CAS  PubMed  Google Scholar 

  • Zubelewicz B, Muc-Wierzgon M, Harbuz MS, Brodziak A (2000) Central single and chronic administration of morphine stimulates corticosterone and interleukin (IL)-6 in adjuvant-induced arthritis. J Physiol Pharmacol 51:897–906

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Vice Chancellor of Research, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran (APRC-9810).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Taghi Mansouri or Bahareh Naghizadeh.

Ethics declarations

Conflict of Interest

Nil.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, M., Naghizadeh, B., Ghorbanzadeh, B. et al. Venlafaxine inhibits naloxone-precipitated morphine withdrawal symptoms: Role of inflammatory cytokines and nitric oxide. Metab Brain Dis 35, 305–313 (2020). https://doi.org/10.1007/s11011-019-00491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-019-00491-4

Keywords

Navigation