Skip to main content

Advertisement

Log in

Alpha-lipoic acid mitigates toxic-induced demyelination in the corpus callosum by lessening of oxidative stress and stimulation of polydendrocytes proliferation

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Multiple Sclerosis (MS), is a disease that degenerates myelin in central nervous system (CNS). Reactive oxygen species (ROSs) are toxic metabolites, and accumulating data indicate that ROSs-mediated apoptosis of oligodendrocytes (OLGs) plays a major role in the pathogenesis of MS under oxidative stress conditions. In this study, we investigated the role of endogenous antioxidant alpha-lipoic acid (ALA) as ROSs scavenger in the OLGs loss and myelin degeneration during cuprizone (cup)-induced demyelination in the experimental model of MS. Our results have shown that ALA treatment significantly increased population of mature OLGs (MOG+ cells), as well as decreased oxidative stress (ROSs, COX-2 and PGE2) and apoptosis mediators (caspase-3 and Bax/Bcl2 ratio) in corpus callosum (CC). Surprisingly, ALA significantly stimulates population of NG2 chondroitin sulfate proteoglycan positive glia (NG2+ cells or polydendrocytes), from week 4 afterward. Accordingly ALA could prevents apoptosis, delays demyelination and recruits OLGs survival and regeneration mechanisms in CC. We conclude that ALA has protective effects against toxic demyelination via reduction of redox signaling, and alleviation of polydendrocytes vulnerability to excitotoxic challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALA:

Alpha-lipoic acid

CC:

Corpus callosum

CNS:

Central nervous system

COX-1:

Cyclooxygenase-1

COX-2:

Cyclooxygenase-2

MS:

Multiple Sclerosis

MOG:

Myelin oligodendrocyte glycoprotein

OLGs:

Oligodendrocytes

OPCs:

Oligodendrocyte precursor cells

PGE2:

Prostaglandin E2

ROSs:

Reactive oxygen species

RNSs:

Reactive nitrogen species

References

  • Albrecht S, Hagemeier K, Ehrlich M, Kemming C, Trotter J, Kuhlmann T (2016) Recovery from Toxic-Induced Demyelination Does Not Require the NG2 Proteoglycan. PLoS One 11(10):e0163841

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed MA, El-Awdan SA (2015) Lipoic acid and pentoxifylline mitigate nandrolone decanoate-induced neurobehavioral perturbations in rats via re-balance of brain neurotransmitters, up-regulation of Nrf2/HO-1 pathway, and down-regulation of TNFR1 expression. Horm Behav 73:186–199

    Article  CAS  PubMed  Google Scholar 

  • Baarine M, Andreoletti P, Athias A, Nury T, Zarrouk A, Ragot K et al (2012) Evidence of oxidative stress in very long chain fatty acid–treated oligodendrocytes and potentialization of ROS production using RNA interference-directed knockdown of ABCD1 and ACOX1 peroxisomal proteins. Neuroscience 213:1–18

    Article  CAS  PubMed  Google Scholar 

  • Burg MA, Nishiyama A, Stallcup WB (1997) A central segment of the NG2 proteoglycan is critical for the ability of glioma cells to bind and migrate toward type VI collagen. Exp Cell Res 235(1):254–264

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary P, Marracci G, Galipeau D, Pocius E, Morris B, Bourdette D (2015a) Lipoic acid reduces inflammation in a mouse focal cortical experimental autoimmune encephalomyelitis model. J Neuroimmunol 289:68–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary P, Marracci G, Galipeau D, Pocius E, Morris B, Bourdette D (2015b) Lipoic acid reduces inflammation in a mouse focal cortical experimental autoimmune encephalomyelitis model. J Neuroimmunol 289:68–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chekenya M, Rooprai H, Davies D, Levine J, Butt A, Pilkington G (1999) The NG2 chondoitin sulfate proteoglycan: role in malignant progression of human brain tumours. Int J Dev Neurosci 17(5):421–435

    Article  CAS  PubMed  Google Scholar 

  • Choi KH, Park MS, Kim HS, Kim KT, Kim HS, Kim JT et al (2015) Alpha-lipoic acid treatment is neurorestorative and promotes functional recovery after stroke in rats. Mol Brain 11(8):9

    Article  Google Scholar 

  • Deng H, Zuo X, Zhang J, Liu X, Liu L, Xu Q, Wu Z, Ji A (2015) Α-lipoic acid protects against cerebral ischemia/reperfusion-induced injury in rats. Mol Med Rep 11(5):3659–3665

    Article  CAS  PubMed  Google Scholar 

  • Dong, Y., Wang, H., & Chen, Z. (2015). Alpha-lipoic acid attenuates cerebral ischemia and reperfusion injury via insulin receptor and PI3K/Akt-dependent inhibition of NADPH oxidase. International journal of endocrinology, 2015

  • Font-Nieves M, Sans-Fons MG, Gorina R, Bonfill-Teixidor E, Salas-Pérdomo A, Márquez-Kisinousky L, Santalucia T, Planas AM (2012) Induction of COX-2 enzyme and down-regulation of COX-1 expression by lipopolysaccharide (LPS) control prostaglandin E2 production in astrocytes. J Biol Chem 287(9):6454–6468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2004) The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 251(3):261–268

    Article  CAS  PubMed  Google Scholar 

  • Goldberg J, Clarner T, Beyer C, Kipp M (2015) Anatomical distribution of cuprizone-induced lesions in C57BL6 mice. J Mol Neurosci 57(2):166–175

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka Y, Yan Z, Torigoe M, Yoshiaki K, Murakami F (2016) From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain. Proc Japan Acad Ser B, Phys Biol Sci 92(1):1

    Article  Google Scholar 

  • Huang YP, Jin HY, Yu HP (2017) Inhibitory effects of alpha-lipoic acid on oxidative stress in the rostral ventrolateral medulla in rats with salt-induced hypertension. Int J Mol Med 39(2):430–436

    Article  PubMed  Google Scholar 

  • Hill RA, Nishiyama A (2014) NG2 cells (polydendrocytes): listeners to the neural network with diverse properties. Glia 62(8):1195–1210

    Article  PubMed  PubMed Central  Google Scholar 

  • Hohlfeld R, Dornmair K, Meinl E, Wekerle H (2016) The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol 15(2):198–209

    Article  CAS  PubMed  Google Scholar 

  • Jang Y-S, Lee M-H, Lee S-H, Bae K (2011) Cu/Zn superoxide dismutase is differentially regulated in period gene-mutant mice. Biochem Biophys Res Commun 409(1):22–27

    Article  CAS  PubMed  Google Scholar 

  • Khani M, Amani D, Taheripanah R, Sanadgol N, Feizollahzadeh S, Rahmani Z (2015) Transforming growth factor beta-1 (TGF-β1) gene single nucleotide polymorphisms (SNPs) and susceptibility to pre-eclampsia in Iranian women: A case–control study. Pregnan Hyperten: Int J Women's Cardiovasc Health 5(4):267–272

    Article  Google Scholar 

  • Kucharova K, Stallcup WB (2010) The NG2 proteoglycan promotes oligodendrocyte progenitor proliferation and developmental myelination. Neuroscience 166(1):185–194

    Article  CAS  PubMed  Google Scholar 

  • Makagiansar IT, Williams S, Mustelin T, Stallcup WB (2007) Differential phosphorylation of NG2 proteoglycan by ERK and PKCα helps balance cell proliferation and migration. J Cell Biol 178(1):155–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma R, Wang X, Peng P, Xiong J, Dong H, Wang L, Ding Z (2016) Alpha-lipoic acid inhibits sevoflurane-induced neuronal apoptosis through PI3K/Akt signalling pathway. Cell Biochem Funct 34(1):42–47

    Article  CAS  PubMed  Google Scholar 

  • Ming X, Li W, Maeda Y, Blumberg B, Raval S, Cook SD, Dowling PC (2002) Caspase-1 expression in multiple sclerosis plaques and cultured glial cells. J Neurol Sci 197(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Mirshafiey A, Mohsenzadegan M (2009a) Antioxidant therapy in multiple sclerosis. Immunopharmacol Immunotoxicol 31(1):13–29

    Article  CAS  PubMed  Google Scholar 

  • Mirshafiey A, Mohsenzadegan M (2009b) Antioxidant therapy in multiple sclerosis. Immunopharmacol Immunotoxicol 31(1):13–29. https://doi.org/10.1080/08923970802331943

    Article  CAS  PubMed  Google Scholar 

  • Ortiz, G. G., Pacheco-Moisés, F. P., Bitzer-Quintero, O. K., Ramírez-Anguiano, A. C., Flores-Alvarado, L. J., Ramírez-Ramírez, V., . . . Torres-Sánchez, E. D. (2013). Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clinical and Developmental Immunology, 2013

  • Pfeifenbring S, Nessler S, Wegner C, Stadelmann C, Brück W (2015) Remyelination After Cuprizone-Induced Demyelination Is Accelerated in Juvenile Mice. J Neuropathol Exp Neurol 74(8):756–766

    Article  CAS  PubMed  Google Scholar 

  • Pu, Y., Zhang, S., Zhou, R., Huang, N., Li, H., Wei, W., . . . Li, Z. (2015). IL-17A up-regulates expression of endothelial tissue factor in liver cirrhosis via the ROS/p38 signal pathway. Biochemical and biophysical research communications

  • Ramroodi N, Khani M, Ganjali Z, Javan MR, Sanadgol N, Khalseh R et al (2015) Prophylactic effect of BIO-1211 small-molecule antagonist of VLA-4 in the EAE mouse model of multiple sclerosis. Immunol Investig 44(7):694–712

    Article  CAS  Google Scholar 

  • Ramroodi N, Niazi AA, Sanadgol N, Ganjali Z, Sarabandi V (2013) Evaluation of reactive Epstein–Barr Virus (EBV) in Iranian patient with different subtypes of multiple sclerosis (MS). Braz J Infect Dis 17(2):156–163

    Article  PubMed  Google Scholar 

  • Sanadgol N, Golab F, Mostafaie A, Mehdizadeh M, Abdollahi M, Sharifzadeh M, Ravan H (2016) Ellagic acid ameliorates cuprizone-induced acute CNS inflammation via restriction of microgliosis and down-regulation of CCL2 and CCL3 pro-inflammatory chemokines. Cell Molec Biol (Noisy-le-Grand, France) 62(12):24

    CAS  Google Scholar 

  • Sanadgol N, Golab F, Tashakkor Z, Taki N, Moradi Kouchi S, Mostafaie A, Mehdizadeh M, Abdollahi M, Taghizadeh G, Sharifzadeh M (2017) Neuroprotective effects of ellagic acid on cuprizone-induced acute demyelination through limitation of microgliosis, adjustment of CXCL12/IL-17/IL-11 axis and restriction of mature oligodendrocytes apoptosis. Pharm Biol 55(1):1679–1687

    Article  CAS  PubMed  Google Scholar 

  • Sanchooli J, Ramroodi N, Sanadgol N, Sarabandi V, Ravan H, Rad RS (2014) Relationship between metalloproteinase 2 and 9 concentrations and soluble CD154 expression in Iranian patients with multiple sclerosis. Kaohsiung J Med Sci 30(5):235–242

    Article  PubMed  Google Scholar 

  • Sarvandi SS, Joghataei MT, Parivar K, Khosravi M, Sarveazad A, Sanadgol N (2015) In vitro differentiation of rat mesenchymal stem cells to hepatocyte lineage. Iran J Basic Med Sci 18(1):89

    PubMed  PubMed Central  Google Scholar 

  • Shinto L, Quinn J, Montine T, Dodge HH, Woodward W, Baldauf-Wagner S et al (2014) A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer's disease. J Alzheimers Dis 38(1):111–120

    CAS  PubMed  Google Scholar 

  • Silva MCC, de Sousa CNS, Gomes PXL, de Oliveira GV, Araújo FYR, Ximenes NC et al (2016) Evidence for protective effect of lipoic acid and desvenlafaxine on oxidative stress in a model depression in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 64:142–148

    Article  CAS  Google Scholar 

  • Steelman AJ, Zhou Y, Koito H, Kim S, Payne HR, Lu QR, Li J (2016) Activation of oligodendroglial Stat3 is required for efficient remyelination. Neurobiol Dis 91:336–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Horssen J, Witte ME, Schreibelt G, de Vries HE (2011) Radical changes in multiple sclerosis pathogenesis. Biochim Biophys Acta 1812(2):141–150. https://doi.org/10.1016/j.bbadis.2010.06.011

    Article  PubMed  Google Scholar 

  • von Leden, R. E., Yauger, Y. J., Khayrullina, G., & Byrnes, K. (2016). Review: CNS Injury and NADPH Oxidase: Oxidative Stress and Therapeutic Targets. Journal of neurotrauma(ja)

  • Wei W, Wang H, Wu Y, Ding K, Li T, Cong Z et al (2015) Alpha lipoic acid inhibits neural apoptosis via a mitochondrial pathway in rats following traumatic brain injury. Neurochem Int 87:85–91

    Article  CAS  PubMed  Google Scholar 

  • Wu M-H, Huang C-C, Chio C-C, Tsai K-J, Chang C-P, Lin N-K, Lin M-T (2016) Inhibition of peripheral TNF-α and downregulation of microglial activation by alpha-lipoic acid and etanercept protect rat brain against ischemic stroke. Mol Neurobiol 53(7):4961–4971

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Xu Z, Liu W, Feng S, Li H, Guo M, Deng Y, Xu B (2017) Alpha-lipoic acid reduces methylmercury-induced neuronal injury in rat cerebral cortex via antioxidation pathways. Environ Toxicol 32(3):931–943

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang ZG, Lu M, Wang X, Shang X, Elias SB, Chopp M (2017) MiR-146a promotes remyelination in a cuprizone model of demyelinating injury. Neuroscience 348:252–263

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Zuo H, Maher BJ, Serwanski DR, LoTurco JJ, Lu QR, Nishiyama A (2012) Olig2-dependent developmental fate switch of NG2 cells. Development 139(13):2299–2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo H, Nishiyama A (2013) Polydendrocytes in development and myelin repair. Neurosci Bull 29(2):165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mehdizadeh.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Funding

This work was supported by the Iran university medical science, grant number 81273037.

Contributors

Mehdi Mehdizadeh designed the study and collected funds. Nima Sanadgol performed the experiments and collected the data. Fatemeh Moradi did the statistical analysis and data interpretation, and finally marziyeh ajdary and nima sanadgol prepared the manuscript and literature search.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanadgol, N., Golab, F., Askari, H. et al. Alpha-lipoic acid mitigates toxic-induced demyelination in the corpus callosum by lessening of oxidative stress and stimulation of polydendrocytes proliferation. Metab Brain Dis 33, 27–37 (2018). https://doi.org/10.1007/s11011-017-0099-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-0099-9

Keywords

Navigation