Skip to main content

Advertisement

Log in

Palmitic acid triggers cell apoptosis in RGC-5 retinal ganglion cells through the Akt/FoxO1 signaling pathway

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Hallmarks of the pathophysiology of glaucoma are oxidative stress and apoptotic death of retinal ganglion cells (RGCs). Lipotoxicity, involving a series of pathological cellular responses after exposure to elevated levels of fatty acids, leads to oxidative stress and cell death in various cell types. The phosphatidylinositol-3-kinase/protein kinase B/Forkhead box O1 (PI3K/Akt/FoxO1) pathway is crucial for cell survival and apoptosis. More importantly, FoxO1 gene has been reported to confer relatively higher risks for eye diseases including glaucoma. However, little information is available regarding the interaction between FoxO1 and RGC apoptosis, much less a precise mechanism. In the present study, immortalized rat retinal ganglion cell line 5 (RGC-5) was used as a model to study the toxicity of palmitic acid (PA), as well as underlying mechanisms. We found that PA exposure significantly decreased cell viability by enhancing apoptosis in RGC-5 cells, as measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry. PA also induced a remarkable increase in reactive oxygen species and malondialdehyde. Moreover, PA significantly decreased the level of phospho-Akt and phospho-FoxO1 in cells. Finally, shRNA knockdown and plasmid overexpression studies displayed that downregulation of Akt protein or upregulation of FoxO1 protein augmented cell death, while knockdown of FoxO1 or overexpression of Akt1 abolished PA-induced cell death. Collectively, our results indicated that PA-induced cell death is mediated through modulation of Akt/FoxO1 pathway activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almaguel FG, Liu JW, Pacheco FJ, Casiano CA, De Leon M (2009) Activation and reversal of lipotoxicity in PC12 and rat cortical cells following exposure to palmitic acid. J Neurosci Res 87(5):1207–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aoun P, Simpkins JW, Agarwal N (2003) Role of PPAR-gamma ligands in neuroprotection against glutamate-induced cytotoxicity in retinal ganglion cells. Invest Ophthalmol Vis Sci 44(7):2999–3004

    Article  PubMed  Google Scholar 

  • Boland MV, Ervin AM, Friedman DS, Jampel HD, Hawkins BS, Vollenweider D et al (2013) Comparative effectiveness of treatments for open-angle glaucoma: a systematic review for the U.S. preventive services task force. Ann Intern Med 158(4):271–279

    Article  PubMed  Google Scholar 

  • Cao J, Feng XX, Yao L, Ning B, Yang ZX, Fang DL, Shen W (2014) Saturated free fatty acid sodium palmitate-induced lipoapoptosis by targeting glycogen synthase kinase-3beta activation in human liver cells. Dig Dis Sci 59(2):346–357

    Article  CAS  PubMed  Google Scholar 

  • Clarkson PM, Thompson HS (2000) Antioxidants: what role do they play in physical activity and health? Am J Clin Nutr 72(2 Suppl):637S–646S

    CAS  PubMed  Google Scholar 

  • Dobson M, Ramakrishnan G, Ma S, Kaplun L, Balan V, Fridman R, Tzivion G (2011) Bimodal regulation of FoxO3 by AKT and 14-3-3. Biochim Biophys Acta 1813(8):1453–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275(5300):661–665

    Article  CAS  PubMed  Google Scholar 

  • Foresti R, Bucolo C, Platania CM, Drago F, Dubois-Rande JL, Motterlini R (2015) Nrf2 activators modulate oxidative stress responses and bioenergetic profiles of human retinal epithelial cells cultured in normal or high glucose conditions. Pharmacol Res 99:296–307

    Article  CAS  PubMed  Google Scholar 

  • Foxton RH, Finkelstein A, Vijay S, Dahlmann-Noor A, Khaw PT, Morgan JE, Shima DT, Ng YS (2013) VEGF-A is necessary and sufficient for retinal neuroprotection in models of experimental glaucoma. Am J Pathol 182(4):1379–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan L, Zheng W, Chabot JG, Unterman TG, Quirion R (2005) Nuclear/cytoplasmic shuttling of the transcription factor FoxO1 is regulated by neurotrophic factors. J Neurochem 93(5):1209–1219

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Zhang H, Liu J, Lau CW, Liu P, Chen ZY, Lee HK, Tipoe GL, Ho HM, Yao X, Huang Y (2014) Cyclooxygenase-2-dependent oxidative stress mediates palmitate-induced impairment of endothelium-dependent relaxations in mouse arteries. Biochem Pharmacol 91(4):474–482

    Article  CAS  PubMed  Google Scholar 

  • Gorgani-Firuzjaee S, Adeli K, Meshkani R (2015) Inhibition of SH2-domain-containing inositol 5-phosphatase (SHIP2) ameliorates palmitate induced-apoptosis through regulating Akt/FOXO1 pathway and ROS production in HepG2 cells. Biochem Biophys Res Commun 464(2):441–446

    Article  CAS  PubMed  Google Scholar 

  • Gunhan E, van der List D, Chalupa LM (2003) Ectopic photoreceptors and cone bipolar cells in the developing and mature retina. J Neurosci 23(4):1383–1389

    PubMed  Google Scholar 

  • Hsiao YH, Lin CI, Liao H, Chen YH, Lin SH (2014) Palmitic acid-induced neuron cell cycle G2/M arrest and endoplasmic reticular stress through protein palmitoylation in SH-SY5Y human neuroblastoma cells. Int J Mol Sci 15(11):20876–20899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Li G, Qiu J, Gonzalez P, Challa P (2013) Protective effects of resveratrol in experimental retinal detachment. PLoS One 8(9):e75735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamoorthy RR, Agarwal P, Prasanna G, Vopat K, Lambert W, Sheedlo HJ, Pang IH, Shade D, Wordinger RJ, Yorio T, Clark AF, Agarwal N (2001) Characterization of a transformed rat retinal ganglion cell line. Brain Res Mol Brain Res 86(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  • Kulacoglu DN, Kocer I, Kurtul N, Keles S, Baykal O (2003) Alterations of fatty acid composition of erythrocyte membrane in type 2 diabetes patients with diabetic retinopathy. Jpn J Ophthalmol 47(6):551–556

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Kowluru A, Kowluru RA (2015) Lipotoxicity augments glucotoxicity-induced mitochondrial damage in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci 56(5):2985–2992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang X, Hu M, Rogers CQ, Shen Z, You M (2011) Role of SIRT1-FoxO1 signaling in dietary saturated fat-dependent upregulation of liver adiponectin receptor 2 in ethanol-administered mice. Antioxid Redox Signal 15(2):425–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Wang R, Zhou H, Zhang L, Cao Y, Wang X, Hao Y (2015) SHIP2 on pI3K/Akt pathway in palmitic acid stimulated islet beta cell. Int J Clin Exp Med 8(3):3210–3218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Vitart V, Burdon KP, Khor CC, Bykhovskaya Y, Mirshahi A, Hewitt AW et al (2013) Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nat Genet 45(2):155–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez SC, Tanabe K, Cras-Meneur C, Abumrad NA, Bernal-Mizrachi E, Permutt MA (2008) Inhibition of Foxo1 protects pancreatic islet beta-cells against fatty acid and endoplasmic reticulum stress-induced apoptosis. Diabetes 57(4):846–859

    Article  CAS  PubMed  Google Scholar 

  • Mayer CM, Belsham DD (2010) Palmitate attenuates insulin signaling and induces endoplasmic reticulum stress and apoptosis in hypothalamic neurons: rescue of resistance and apoptosis through adenosine 5′ monophosphate-activated protein kinase activation. Endocrinology 151(2):576–585

    Article  CAS  PubMed  Google Scholar 

  • Omae N, Ito M, Hase S, Nagasawa M, Ishiyama J, Ide T, Murakami K (2012) Suppression of FoxO1/cell death-inducing DNA fragmentation factor alpha-like effector a (Cidea) axis protects mouse beta-cells against palmitic acid-induced apoptosis. Mol Cell Endocrinol 348(1):297–304

    Article  PubMed  Google Scholar 

  • Song J, Ren P, Zhang L, Wang XL, Chen L, Shen YH (2010) Metformin reduces lipid accumulation in macrophages by inhibiting FOXO1-mediated transcription of fatty acid-binding protein 4. Biochem Biophys Res Commun 393(1):89–94

    Article  CAS  PubMed  Google Scholar 

  • Ulloth JE, Casiano CA, De Leon M (2003) Palmitic and stearic fatty acids induce caspase-dependent and -independent cell death in nerve growth factor differentiated PC12 cells. J Neurochem 84(4):655–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GL, Fu YC, Xu WC, Feng YQ, Fang SR, Zhou XH (2009) Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via Sirt1-FOXO1 signaling pathway. Biochem Biophys Res Commun 380(3):644–649

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhou X, Huang J, Mu N, Guo Z, Wen Q, Wang R, Chen S, Feng ZP, Zheng W (2013) The role of Akt/FoxO3a in the protective effect of venlafaxine against corticosterone-induced cell death in PC12 cells. Psychopharmacology 228(1):129–141

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang R, Thrimawithana T, Little PJ, Xu J, Feng ZP, Zheng W (2014) The nerve growth factor signaling and its potential as therapeutic target for glaucoma. Biomed Res Int 2014:759473

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Lin H, Hao N, Zhu Z, Wang D, Li Y, Chen H, Zhu Y, Han X (2015) Forkhead box O1 mediates defects in palmitate-induced insulin granule exocytosis by downregulation of calcium/calmodulin-dependent serine protein kinase expression in INS-1 cells. Diabetologia 58(6):1272–1281

    Article  CAS  PubMed  Google Scholar 

  • Wong KL, Wu YR, Cheng KS, Chan P, Cheung CW, Lu DY, Su TH, Liu ZM, Leung YM (2014) Palmitic acid-induced lipotoxicity and protection by (+)-catechin in rat cortical astrocytes. Pharmacol Rep 66(6):1106–1113

    Article  CAS  PubMed  Google Scholar 

  • Zeng Z, Wang H, Shang F, Zhou L, Little PJ, Quirion R, Zheng W (2016) Lithium ions attenuate serum-deprivation-induced apoptosis in PC12 cells through regulation of the Akt/FoxO1 signaling pathways. Psychopharmacology 233(5):785–794

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Tang N, Hadden TJ, Rishi AK (2011) Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 1813(11):1978–1986

    Article  CAS  PubMed  Google Scholar 

  • Zheng WH, Quirion R (2009) Glutamate acting on N-methyl-D-aspartate receptors attenuates insulin-like growth factor-1 receptor tyrosine phosphorylation and its survival signaling properties in rat hippocampal neurons. J Biol Chem 284(2):855–861

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Zeng Z, Bhardwaj SK, Jamali S, Srivastava LK (2013) Lithium normalizes amphetamine-induced changes in striatal FoxO1 phosphorylation and behaviors in rats. Neuroreport 24(10):560–565

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the National Natural Science Fund of China (No U1304815) and Outstanding Young Talent Research Fund of Zhengzhou University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiwen Zeng or Qiang Wen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Panshi Yan and Shu Tang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, P., Tang, S., Zhang, H. et al. Palmitic acid triggers cell apoptosis in RGC-5 retinal ganglion cells through the Akt/FoxO1 signaling pathway. Metab Brain Dis 32, 453–460 (2017). https://doi.org/10.1007/s11011-016-9935-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-016-9935-6

Keywords

Navigation