Skip to main content

Advertisement

Log in

Reduced neurotrophic factor level is the early event before the functional neuronal deficiency in high-fat diet induced obese mice

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Neurodegeneration is considered one of the possible complications of high fat diet (HFD) induced obesity. Much evidence has shown the close relationship between HFD and dementia at comparatively later stage of neuronal injury. It is so far not clear that the initial events of neuronal injury resulting from HFD and obesity. In the present research, obese mouse model achieved by 3-month HFD was applied for the investigation of the possible neuronal deficiency before the obvious cognitive decline. We found that 3-month HFD has already increased the average level of body weight of mice. But almost no obvious cognitive defect was observed. At such time point, we detected the cleavage of amyloid precursor protein (APP), including the expression and maturation level of α- and β-secretase and proteolytic fragment soluble APP. Results showed similar readout between HFD and normal diet (ND) mice. Besides, neuronal inflammation and brain-blood barrier permeability were also detected. No obvious changes could be observed between HFD and ND mice. Surprisingly, the first detectable neuronal changes was showed to be the downregulation of some neurotrpic factors, like neuronal growth factor β and brain derived neurotrophic factor, together with the activity of specific receptors, like Trk receptor phosphorylation. All the data piled up indicated that the early neuronal change in HFD induced obese mice was the downregulation of some neurotrophic factors. The results may provide the potential clue to therapeutic and preventive strategy for HFD induced cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Maksoud S, Hassanein S, Gohar N, Attia S, Gad M (2016) Investigation of brain-derived neurotrophic factor (BDNF) gene expression in hypothalamus of obese rats: Modulation by omega-3 fatty acids. Nutr Neurosci. doi:10.1080/1028415X.2016.1180859

    PubMed  Google Scholar 

  • Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4(4):299–309

    Article  CAS  PubMed  Google Scholar 

  • Couzin-Frankel J (2014) Nutrition. Diet studies challenge thinking on proteins versus carbs. Science 343(6175):1068

    Article  CAS  PubMed  Google Scholar 

  • Cuchillo-Ibañez I, Lopez-Font I, Boix-Amorós A, Brinkmalm G, Blennow K, Molinuevo J, Sáez-Valero J (2015) Heteromers of amyloid precursor protein in cerebrospinal fluid. Mol Neurodegener 10:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datusalia AK, Sharma SS (2014) Amelioration of diabetes-induced cognitive deficits by GSK-3beta inhibition is attributed to modulation of neurotransmitters and neuroinflammation. Mol Neurobiol 50(2):390–405

    Article  CAS  PubMed  Google Scholar 

  • De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, Saad MJ, Velloso LA (2005) Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146(10):4192–4199

    Article  CAS  PubMed  Google Scholar 

  • Dinel AL, Andre C, Aubert A, Ferreira G, Laye S, Castanon N (2011) Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome. PLoS One 6(9):e24325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donath MY, Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11(2):98–107

    Article  CAS  PubMed  Google Scholar 

  • Flegal KM, Kit BK, Orpana H, Graubard BI (2013) Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309(1):71–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fotuhi M, Do D, Jack C (2012) Modifiable factors that alter the size of the hippocampus with ageing. Nat Rev Neurol 8(4):189–202

    CAS  PubMed  Google Scholar 

  • Kalmijn S, Foley D, White L, Burchfiel CM, Curb JD, Petrovitch H, Ross GW, Havlik RJ, Launer LJ (2000) Metabolic cardiovascular syndrome and risk of dementia in Japanese-American elderly men. The Honolulu-Asia aging study Arterioscler. Thromb Vasc Biol 20(10):2255–2260

    Article  CAS  Google Scholar 

  • Kang Y, Wang F, Lu Z, Ying H, Zhang H, Ding W, Wang C, Shi L (2013) MAPK kinase 3 potentiates chlamydia HSP60-induced inflammatory response through distinct activation of NF-kappaB. J Immunol 191(1):386–394

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Jeraldo P, Kurti A, Berg Miller M, Cook M, Whitlock K, Goldenfeld N, Woods J, White B, Chia N, Fryer J (2014) Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegener 9:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanoski SE, Meisel RL, Mullins AJ, Davidson TL (2007) The effects of energy-rich diets on discrimination reversal learning and on BDNF in the hippocampus and prefrontal cortex of the rat. Behav Brain Res 182(1):57–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanoski SE, Zhang Y, Zheng W, Davidson TL (2010) The effects of a high-energy diet on hippocampal function and blood-brain barrier integrity in the rat. J Alzheimers Dis 21(1):207–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kareholt I, Winblad B, Helkala EL, Tuomilehto J, Soininen H, Nissinen A (2005) Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol 62(10):1556–1560

    Article  PubMed  Google Scholar 

  • Kopelman PG (2000) Obesity as a medical problem. Nature 404(6778):635–643

    CAS  PubMed  Google Scholar 

  • Kosari S, Badoer E, Nguyen JC, Killcross AS, Jenkins TA (2012) Effect of western and high fat diets on memory and cholinergic measures in the rat. Behav Brain Res 235(1):98–103

    Article  CAS  PubMed  Google Scholar 

  • Krabbe KS, Nielsen AR, Krogh-Madsen R, Plomgaard P, Rasmussen P, Erikstrup C, Fischer CP, Lindegaard B, Petersen AM, Taudorf S, Secher NH, Pilegaard H, Bruunsgaard H, Pedersen BK (2007) Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 50(2):431–438

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wang Y, Yan M, Zhang L, Pang T, Liao H (2013) Glimepiride attenuates Abeta production via suppressing BACE1 activity in cortical neurons. Neurosci Lett 557(Pt B):90–94

    Article  CAS  PubMed  Google Scholar 

  • Lu B, Nagappan G, Lu Y (2014) BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb Exp Pharmacol 220:223–250

    Article  CAS  PubMed  Google Scholar 

  • Mehla J, Chauhan BC, Chauhan NB (2008) Experimental induction of type 2 diabetes in aging-accelerated mice triggered Alzheimer-like pathology and memory deficits. J Alzheimers Dis 39(1):145–162

    Google Scholar 

  • Miller AA, Spencer SJ (2014) Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun 42:10–21

    Article  CAS  PubMed  Google Scholar 

  • Molteni R, Barnard RJ, Ying Z, Roberts CK, Gomez-Pinilla F (2002) A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112(4):803–814

    Article  CAS  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60

    Article  CAS  PubMed  Google Scholar 

  • Nerurkar PV, Johns LM, Buesa LM, Kipyakwai G, Volper E, Sato R, Shah P, Feher D, Williams PG, Nerurkar VR (2011) Momordicacharantia (bitter melon) attenuates high-fat diet-associated oxidative stress and neuroinflammation. J Neuroinflammation 8:64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen JC, Killcross AS, Jenkins TA (2014) Obesity and cognitive decline: role of inflammation and vascular changes. Front Neurosci 8:375

    Article  PubMed  PubMed Central  Google Scholar 

  • Odegaard JI, Chawla A (2013) Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 339(6116):172–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang S, Hsuchou H, Kastin AJ, Wang Y, Yu C, Pan W (2014) Diet-induced obesity suppresses expression of many proteins at the blood-brain barrier. J Cereb Blood Flow Metab 34(1):43–51

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Liu J, Tang Y, Han T, Han S, Li H, Hou C, Long J (2014) High-fat-diet-induced weight gain ameliorates bone loss without exacerbating AbetaPP processing and cognition in female APP/PS1. Mice Front Cell Neurosci 8:225

    PubMed  Google Scholar 

  • Rao AA (2013) Views and opinion on BDNF as a target for diabetic cognitive dysfunction. Bioinformation 9(11):551–554

    Article  PubMed  PubMed Central  Google Scholar 

  • Sellbom KS, Gunstad J (2012) Cognitive function and decline in obesity. J Alzheimers Dis 30(Suppl 2):S89–S95

    PubMed  Google Scholar 

  • Shefer G, Marcus Y, Stern N (2013) Is obesity a brain disease? Neurosci Bio behav Rev 37(10 Pt 2):2489–2503

    Article  Google Scholar 

  • Sobesky JL, Barrientos RM, De May HS, Thompson BM, Weber MD, Watkins LR, Maier SF (2014) High-fat diet consumption disrupts memory and primes elevations in hippocampal IL-1beta, an effect that can be prevented with dietary reversal or IL-1 receptor antagonism. Brain Behav Immun 42:22–32

    Article  CAS  PubMed  Google Scholar 

  • Solon-Biet SM, McMahon AC, Ballard JW, Ruohonen K, Wu LE, Cogger VC, Warren A, Huang X, Pichaud N, Melvin RG, Gokarn R, Khalil M, Turner N, Cooney GJ, Sinclair DA, Raubenheimer D, Le Couteur DG, Simpson SJ (2014) The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab 19(3):418–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srodulski S, Sharma S, Bachstetter A, Brelsfoard J, Pascual C, Xie X, Saatman K, Van Eldik L, Despa F (2014) Neuroinflammation and neurologic deficits indiabetes linked to brain accumulation of amylin. Mol Neurodegener 9:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Thirumangalakudi L, Prakasam A, Zhang R, Bimonte-Nelson H, Sambamurti K, Kindy MS, Bhat NR (2008) High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem 106(1):475–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valladolid-Acebes I, Stucchi P, Cano V, Fernandez-Alfonso MS, Merino B, Gil-Ortega M, Fole A, Morales L, Ruiz-Gayo M, Del Olmo N (2011) High-fat diets impair spatial learning in the radial-arm maze in mice. Neurobiol Learn Mem 95(1):80–85

    Article  CAS  PubMed  Google Scholar 

  • Verstynen TD, Weinstein AM, Schneider WW, Jakicic JM, Rofey DL, Erickson KI (2012) Increased body mass index is associated with a global and distributed decrease in white matter microstructural integrity. Psychosom Med 74(7):682–690

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Freire D, Knable L, Zhao W, Gong B, Mazzola P, Ho L, Levine S, Pasinetti GM (2015) Childhood and adolescent obesity and long-term cognitive consequences during aging. J Comp Neurol 523(5):757–768

    Article  PubMed  Google Scholar 

  • Willeumier KC, Taylor DV, Amen DG (2011) Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults. Obesity 19(5):1095–1097

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu A, Ying Z, Gomez-Pinilla F (2004) The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur J Neurosci 19(7):1699–1707

    Article  PubMed  Google Scholar 

  • Xu B, Xie X (2016) Neurotrophic factor control of satiety and body weight. Nat Rev Neurosci 17:282

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Dong F, Ren J, Driscoll MJ, Culver B (2005) High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. Exp Neurol 191(2):318–325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was funded by Zhejiang Provincial Natural Science Foundation of China (LQ13C090006), National Natural Science Foundation of China (81302781) and Hangzhou Science & Technology Plan Project of China (20140633 B36).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huanhuan Wang or Liyun Shi.

Ethics declarations

The Animal Care and Use Committee of the School of Medicine, Hangzhou Normal University approved the experimental protocols in this study.

Conflict of interest

The authors declare that we have no conflict of interest.

Ethical approval

All of the animal experiments were performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and with the approval and monitor of the Animal Care and Use Committee of the School of Medicine, Hangzhou Normal University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, B., Yin, H. et al. Reduced neurotrophic factor level is the early event before the functional neuronal deficiency in high-fat diet induced obese mice. Metab Brain Dis 32, 247–257 (2017). https://doi.org/10.1007/s11011-016-9905-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-016-9905-z

Keywords

Navigation