Skip to main content

Advertisement

Log in

Cerebral malaria – clinical manifestations and pathogenesis

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

One of the most common central nervous system diseases in tropical countries is cerebral malaria (CM). Malaria is a common protozoan infection that is responsible for enormous worldwide mortality and economic burden on the society. Episodes of Plasmodium falciparum (Pf) caused CM may be lethal, while survivors are likely to suffer from persistent debilitating neurological deficits, especially common in children. In this review article, we have summarized the various symptoms and manifestations of CM in children and adults, and entailed the molecular basis of the disease. We have also emphasized how pathogenesis of the disease is effected by the parasite and host responses including blood brain barrier (BBB) disruption, endothelial cell activation and apoptosis, nitric oxide bioavailability, platelet activation and apoptosis, and neuroinflammation. Based on a few recent studies carried out in experimental mouse malaria models, we propose a basis for the neurological deficits and sequelae observed in human cerebral malaria, and summarize how existing drugs may improve prognosis in affected individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anstey NM et al (1996) Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. J Exp Med 184:557–567

    Article  CAS  PubMed  Google Scholar 

  • Armah H, Wiredu EK, Dodoo AK, Adjei AA, Tettey Y, Gyasi R (2005) Cytokines and adhesion molecules expression in the brain in human cerebral malaria. Int J Environ Res Public Health 2:123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachmann J et al (2014) Affinity proteomics reveals elevated muscle proteins in plasma of children with cerebral malaria. PLoS Pathog 10:e1004038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bangirana P et al (2014) Severe malarial anemia is associated with long-term neurocognitive impairment. Clin Infect Dis :ciu293

  • Barbier M et al (2011) Platelets alter gene expression profile in human brain endothelial cells in an in vitro model of cerebral malaria. PLoS One 6:e19651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barfod A, Persson T, Lindh J (2009) In vitro selection of RNA aptamers against a conserved region of the Plasmodium falciparum erythrocyte membrane protein 1. Parasitol Res 105:1557–1566

    Article  PubMed  PubMed Central  Google Scholar 

  • Beare NA, Southern C, Chalira C, Taylor TE, Molyneux ME, Harding SP (2004) Prognostic significance and course of retinopathy in children with severe malaria. Arch Ophthalmol 122:1141–1147

    Article  PubMed  Google Scholar 

  • Beare NA, Taylor TE, Harding SP, Lewallen S, Molyneux ME (2006) Malarial retinopathy: a newly established diagnostic sign in severe malaria. Am J Trop Med Hyg 75:790–797

    PubMed  PubMed Central  Google Scholar 

  • Beare NA, Harding SP, Taylor TE, Lewallen S, Molyneux ME (2009) Perfusion abnormalities in children with cerebral malaria and malarial retinopathy. J Infect Dis 199:263–271

    Article  PubMed  PubMed Central  Google Scholar 

  • Beeson JG et al (2000) Adhesion of Plasmodium falciparum-infected erythrocytes to hyaluronic acid in placental malaria. Nat Med 6:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendt A, Simmons D, Tansey J, Newbold C, Marsh K (1989) Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature 341:57–59

    Article  CAS  PubMed  Google Scholar 

  • Boivin MJ, Bangirana P, Byarugaba J, Opoka RO, Idro R, Jurek AM, John CC (2007) Cognitive impairment after cerebral malaria in children: a prospective study. Pediatrics 119:e360–e366

    Article  PubMed  PubMed Central  Google Scholar 

  • Boivin MJ, Vokhiwa M, Sikorskii A, Magen JG, Beare N (2014) Cerebral malaria retinopathy predictors of persisting neurocognitive outcomes in Malawian children. Pediatr Infect Dis J

  • Bridges DJ et al (2010) Rapid activation of endothelial cells enables Plasmodium falciparum adhesion to platelet-decorated von Willebrand factor strings. Blood 115:1472–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta (BBA)-Bioenergetics 1504:46–57

    Article  CAS  Google Scholar 

  • Brown H, Rogerson S, Taylor T, Tembo M, Mwenechanya J, Molyneux M, Turner G (2001) Blood–brain barrier function in cerebral malaria in Malawian children. Am J Trop Med Hyg 64:207–213

    CAS  PubMed  Google Scholar 

  • Buchanan JE, Phillis JW (1993) The role of nitric oxide in the regulation of cerebral blood flow. Brain Res 610:248–255

    Article  CAS  PubMed  Google Scholar 

  • Cabrales P, Zanini GM, Meays D, Frangos JA, Carvalho LJ (2011) Nitric oxide protection against murine cerebral malaria is associated with improved cerebral microcirculatory physiology. J Infect Dis :jir058

  • Carter J, Murira G, Ross A, Mung’ala-Odera V, Newton C (2003) Speech and language sequelae of severe malaria in Kenyan children. Brain Inj 17:217–224

    Article  CAS  PubMed  Google Scholar 

  • Carter JA, Mung’ala-Odera V, Neville BG, Murira G, Mturi N, Musumba C, Newton CR (2005) Persistent neurocognitive impairments associated with severe falciparum malaria in Kenyan children. J Neurol Neurosurg Psychiatry 76:476–481. doi:10.1136/jnnp.2004.043893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter JA, Lees JA, Gona JK, Murira G, Rimba K, Neville BG, Newton CR (2006) Severe falciparum malaria and acquired childhood language disorder. Dev Med Child Neurol 48:51–57

    Article  PubMed  Google Scholar 

  • Charunwatthana P, Faiz MA, Ruangveerayut R, Maude R, Rahman MR, Roberts LJ (2009) N-acetylcysteine as adjunctive treatment in severe malaria: a randomized double blinded placebo controlled clinical trial. Crit Care Med 37:516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Combes V et al (2004) Circulating endothelial microparticles in malawian children with severe falciparum malaria complicated with coma. JAMA 291:2542–2544

    CAS  PubMed  Google Scholar 

  • Combes V et al (2005) ABCA1 gene deletion protects against cerebral malaria: potential pathogenic role of microparticles in neuropathology. Am J Pathol 166:295–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conroy AL et al (2010) Endothelium-based biomarkers are associated with cerebral malaria in Malawian children: a retrospective case–control study. PLoS One 5:e15291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke BM, Berendt AR, Craig AG, MacGregor J, Newbold CI, Nash GB (1994) Rolling and stationary cytoadhesion of red blood cells parasitized by Plasmodium falciparum: separate roles for ICAM-1, CD36 and thrombospondin. Br J Haematol 87:162–170

    Article  CAS  PubMed  Google Scholar 

  • Cramer JP et al (2005) Age dependent effect of plasma nitric oxide on parasite density in Ghanaian children with severe malaria. Tropical Med Int Health 10:672–680

    Article  CAS  Google Scholar 

  • Crawley J, Smith S, Muthinji P, Marsh K, Kirkham F (2001) Electroencephalographic and clinical features of cerebral malaria. Arch Dis Child 84:247–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Miranda AS et al (2015) Evidence for the contribution of adult neurogenesis and hippocampal cell death in experimental cerebral malaria cognitive outcome. Neuroscience 284:920–933

    Article  PubMed  CAS  Google Scholar 

  • Dondorp AM, Kager PA, Vreeken J, White NJ (2000) Abnormal blood flow and red blood cell deformability in severe malaria. Parasitol Today 16:228–232

    Article  CAS  PubMed  Google Scholar 

  • Duraisingh MT et al (2005) Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in plasmodium falciparum. Cell 121:13–24

    Article  CAS  PubMed  Google Scholar 

  • El-Assaad F, Wheway J, Hunt NH, Grau GER, Combes V (2014) Production, fate and pathogenicity of plasma microparticles in murine cerebral malaria. PLoS Pathog 10:e1003839

    Article  PubMed  PubMed Central  Google Scholar 

  • English M, Waruiru C, Lightowler C, Murphy S, Kirigha G, Marsh K (1996) Hyponatraemia and dehydration in severe malaria. Arch Dis Child 74:201–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • English M, Sauerwein R, Waruiru C, Mosobo M, Obiero J, Lowe B, Marsh K (1997) Acidosis in severe childhood malaria. QJM 90:263–270

    Article  CAS  PubMed  Google Scholar 

  • English M, Wale S, Binns G, Mwangi I, Sauerwein H, Marsh K (1998) Hypoglycaemia on and after admission in Kenyan children with severe malaria. QJM 91:191–197

    Article  CAS  PubMed  Google Scholar 

  • Epp C, Li F, Howitt CA, Chookajorn T, Deitsch KW (2009) Chromatin associated sense and antisense noncoding RNAs are transcribed from the var gene family of virulence genes of the malaria parasite Plasmodium falciparum. RNA 15:116–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favre N et al (1999) Role of ICAM-1 (CD54) in the development of murine cerebral malaria. Microbes Infect 1:961–968

    Article  CAS  PubMed  Google Scholar 

  • Fiedler U et al (2006) Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation. Nat Med 12:235–239

    Article  CAS  PubMed  Google Scholar 

  • Freitas-Junior LH et al (2000) Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature 407:1018–1022

    Article  CAS  PubMed  Google Scholar 

  • Freitas-Junior LH et al (2005) Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121:25–36

    Article  CAS  PubMed  Google Scholar 

  • Fried M, Duffy PE (1996) Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science 272:1502–1504

    Article  CAS  PubMed  Google Scholar 

  • Furlan M, Robles R, Lamie B (1996) Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood 87:4223–4234

    CAS  PubMed  Google Scholar 

  • Gallo EF, Iadecola C (2011) Neuronal nitric oxide contributes to neuroplasticity-associated protein expression through cGMP, protein kinase G, and extracellular signal-regulated kinase. J Neurosci 31:6947–6955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gramaglia I et al (2006) Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat Med 12:1417–1422

    Article  CAS  PubMed  Google Scholar 

  • Grau GE, Piguet PF, Gretener D, Vesin C, Lambert PH (1988) Immunopathology of thrombocytopenia in experimental malaria. Immunology 65:501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grau GE, Tacchini-Cottier F, Vesin C, Milon G, Lou JN, Piguet PF, Juillard P (1992) TNF-induced microvascular pathology: active role for platelets and importance of the LFA-1/ICAM-1 interaction. Eur Cytokine Netw 4:415–419

    Google Scholar 

  • Grau GE et al (2003) Platelet accumulation in brain microvessels in fatal pediatric cerebral malaria. J Infect Dis 187:461–466

    Article  PubMed  Google Scholar 

  • Guha SK et al (2014) Single episode of mild murine malaria induces neuroinflammation, alters microglial profile, impairs adult neurogenesis, and causes deficits in social and anxiety-like behavior. Brain Behav Immun 42:123–137

    Article  CAS  PubMed  Google Scholar 

  • Gyan B et al (2009) Cerebral malaria is associated with low levels of circulating endothelial progenitor cells in African children. AmJTrop Med Hyg 80:541–546

    Google Scholar 

  • Havlik I et al (2005) Curdlan sulphate in human severe/cerebral Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 99:333–340

    Article  CAS  PubMed  Google Scholar 

  • Hemmer CJ, Kern P, Holst FG, Nawroth PP, Dietrich M (1991) Neither heparin nor acetylsalicylic acid influence the clinical course in human Plasmodium falciparum malaria: a prospective randomized study. Am J Trop Med Hyg 45:608–612

    CAS  PubMed  Google Scholar 

  • Hempel C, Hyttel P, Staalso T, Nyengaard JR, Kurtzhals JAL (2012) Erythropoietin treatment alleviates ultrastructural myelin changes induced by murine cerebral malaria. Malar J 11:216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiller NL, Bhattacharjee S, van Ooij C, Liolios K, Harrison T, Lopez-Estrano C, Haldar K (2004) A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306:1934–1937

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka M, Katayama T, Uematsu K, Kiyomura M, Ito M (2009) In vivo visualization of nitric oxide and interactions among platelets, leukocytes, and endothelium following hemorrhagic shock and reperfusion. Inflamm Res 58:463–471

    Article  CAS  PubMed  Google Scholar 

  • Hossain M, Qadri SM, Liu L (2012) Inhibition of nitric oxide synthesis enhances leukocyte rolling and adhesion in human microvasculature. J Inflamm 9:28–35

    Article  CAS  Google Scholar 

  • Idro R, Karamagi C, Tumwine J (2004) Immediate outcome and prognostic factors for cerebral malaria among children admitted to Mulago Hospital Uganda. Ann Trop Paediatr: Int Child Health 24:17–24

    Article  Google Scholar 

  • Idro R, Jenkins NE, Newton CR (2005) Pathogenesis, clinical features, and neurological outcome of cerebral malaria. Lancet Neurol 4:827–840

    Article  PubMed  Google Scholar 

  • Idro R, Carter JA, Fegan G, Neville BGR, Newton CRJC (2006) Risk factors for persisting neurological and cognitive impairments following cerebral malaria. Arch Dis Child 91:142–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idro R, Kakooza-Mwesige A, Balyejjussa S, Mirembe G, Mugasha C, Tugumisirize J, Byarugaba J (2010) Severe neurological sequelae and behaviour problems after cerebral malaria in Ugandan children. BMC Res Notes 3:104

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain K, Sood S, Gowthamarajan K (2013) Modulation of cerebral malaria by curcumin as an adjunctive therapy. Braz J Infect Dis 17:579–591

    Article  PubMed  Google Scholar 

  • John CC et al (2008) Cerebral malaria in children is associated with long-term cognitive impairment. Pediatrics 122:e92–e99

    Article  PubMed  PubMed Central  Google Scholar 

  • John CC, Kutamba E, Mugarura K, Opoka RO (2010) Adjunctive therapy for cerebral malaria and other severe forms of Plasmodium falciparum malaria 8(9):997–1008

  • Kawachi S, Leffer DJ, Van Der Heyde HC, Laroux S, Gray L, Bharwani SS, Grisham MB (2000) Role of different nitric oxide synthese (NOS) isoforms in the regulation of endothelial cell adhesion molecule (ECAM) expression in vivo. Gastroenterology 118:A827

    Article  Google Scholar 

  • Kim H, Higgins S, Liles WC, Kain KC (2011) Endothelial activation and dysregulation in malaria: a potential target for novel therapeutics. Curr Opin Hematol 18:177–185

    Article  CAS  PubMed  Google Scholar 

  • Kochar D, Kumawat B, Kochar S (1997) Seizures in cerebral malaria. QJM 90:605–607

    Article  CAS  PubMed  Google Scholar 

  • Kochar DK, Kumawat BL, Vyas SP (2000) Prognostic significance of eye changes in cerebral malaria. J Assoc Physicians India 48:473–477

    CAS  PubMed  Google Scholar 

  • Kochar D, Kumawat B, Kochar S, Halwai M, Makkar R, Joshi A, Thanvi I (2002) Cerebral malaria in Indian adults: a prospective study of 441 patients from Bikaner, north-west India. J Assoc Physicians India 50:234–241

    CAS  PubMed  Google Scholar 

  • Kraisin S et al (2011) Association of ADAMTS13 polymorphism with cerebral malaria. Malar J 10:366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci 88:4651–4655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacerda MVG, Mourão MPG, Coelho HCC, Santos JB (2011) Thrombocytopenia in malaria: who cares? Mem Inst Oswaldo Cruz 106:52–63

    Article  PubMed  Google Scholar 

  • Larkin D et al (2009) Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13 inhibition. PLoS Pathog 5:e1000349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Looareesuwan S et al (1983) Retinal hemorrhage, a common sign of significance in cerebral malaria Am J Trop Med Hyg September 1983 32: 911–915. Am J Trop Med Hyg 32:1002–1012

    Google Scholar 

  • Lopansri BK et al (2003) Low plasma arginine concentrations in children with cerebral malaria and decreased nitric oxide production. Lancet 361:676–678

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Rubio JJ, Gontijo AM, Nunes MC, Issar N, Hernandez Rivas R, Scherf A (2007) 5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol Microbiol 66:1296–1305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchi N, Tierney W, Alexopoulos AV, Puvenna V, Granata T, Janigro D (2011) The etiological role of blood–brain barrier dysfunction in seizure disorders Cardiovascular psychiatry and neurology 2011

  • Matsushita K, Yamakuchi M, Morrell CN, Ozaki M, O’Rourke B, Irani K, Lowenstein CJ (2004) Vascular endothelial growth factor regulation of Weibel-Palade body exocytosis. Blood

  • Maude RJ et al (2009) The spectrum of retinopathy in adults with Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 103:665–671

    Article  PubMed  PubMed Central  Google Scholar 

  • Maude RJ et al. (2014) Magnetic resonance imaging of the brain in adults with severe falciparum malaria Renal failure (creatinine > 3 g/dL or anuria) 5:12

  • Mayer C, Slater L, Erat MC, Konrat R, Vakonakis I (2012) Structural analysis of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) intracellular domain reveals a conserved interaction epitope. J Biol Chem 287:7182–7189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medana IM, Turner GDH (2006) Human cerebral malaria and the blood brain barrier. Int J Parasitol 36:555–568

    Article  CAS  PubMed  Google Scholar 

  • Medana IM et al (2002) Axonal injury in cerebral malaria. Am J Pathol 160:655–666

    Article  PubMed  PubMed Central  Google Scholar 

  • Miranda AS et al (2013) Further evidence for an anti-inflammatory role of artesunate in experimental cerebral malaria. Malar J 12:1–13

    Article  CAS  Google Scholar 

  • Mohanty S, Mishra SK, Pati SS, Pattnaik J, Das BS (2003) Complications and mortality patterns due to Plasmodium falciparum malaria in hospitalized adults and children, Rourkela, Orissa, India. Trans R Soc Trop Med Hyg 97:69–70

    Article  PubMed  Google Scholar 

  • Molyneux M, Taylor T, Wirima J, Borgsteinj A (1989) Clinical features and prognostic indicators in paediatric cerebral malaria: a study of 131 comatose Malawian children. QJM 71:441–459

    CAS  PubMed  Google Scholar 

  • Morel O et al. (2005) [The significance of circulating microparticles in physiology, inflammatory and thrombotic diseases] La Revue de medecine interne/fondee par la Societe nationale francaise de medecine interne 26:791–801

  • Mwanga-Amumpaire J et al (2015) Inhaled nitric oxide as an adjunctive treatment for cerebral malaria in children: a phase II randomized open-label clinical trial. In: Open forum infectious diseases. Oxford University Press, p ofv111

  • Nacer A, Movila A, Baer K, Mikolajczak SA, Kappe SHI, Frevert U (2012) Neuroimmunological blood brain barrier opening in experimental cerebral malaria. PLoS Pathog 8:e1002982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • N’Dilimabaka N et al (2014) P. Falciparum isolate-specific distinct patterns of induced apoptosis in pulmonary and brain endothelial cells. PLoS One 9:e90692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Newton C et al (1997) Intracranial hypertension in Africans with cerebral malaria. Arch Dis Child 76:219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton CR, Hien TT, White N (2000) Cerebral malaria. J Neurol Neurosurg Psychiatry 69:433–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ockenhouse CF et al (1992) Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. J Exp Med 176:1183–1189

    Article  CAS  PubMed  Google Scholar 

  • Okoromah C, Afolabi BB, Wall E (2011) Mannitol and other osmotic diuretics as adjuncts for treating cerebral malaria. Cochrane Database Syst Rev 4

  • Olliaro P (2008) Mortality associated with severe Plasmodium falciparum malaria increases with age. Clin Infect Dis 47:158–160

    Article  PubMed  Google Scholar 

  • Olumese P, Adeyemo A, Gbadegesin R, Walker O (1997) Retinal haemorrhage in cerebral malaria. East Afr Med J 74:285–287

    CAS  PubMed  Google Scholar 

  • Oluwayemi IO, Brown BJ, Oyedeji OA, Oluwayemi MA (2014) Neurological sequelae in survivors of cerebral malaria. Pan Afr Med J 15(1)

  • Organisation W (2013) World malaria report 2013. WHO, Geneva

    Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penet M-F, Abou-Hamdan M, Coltel N, Cornille E, Grau GE, De Reggi M, Gharib B (2008) Protection against cerebral malaria by the low-molecular-weight thiol pantethine. Proc Natl Acad Sci 105:1321–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Percãrio S et al (2012) Oxidative stress in malaria. Int J Mol Sci 13:16346–16372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD (2006) Blood brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 1:223–236

    Article  PubMed  Google Scholar 

  • Petter M et al (2011) Expression of P. falciparum var genes involves exchange of the histone variant H2A. Z at the promoter. PLoS Pathog 7:e1001292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phiri HT et al (2011) Elevated plasma von Willebrand factor and propeptide levels in Malawian children with malaria. PLoS One 6:e25626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piguet PF, Kan CD, Vesin C (2002) Thrombocytopenia in an animal model of malaria is associated with an increased caspase-mediated death of thrombocytes. Apoptosis 7:91–98

    Article  CAS  PubMed  Google Scholar 

  • Piguet PF, Da Laperrousaz C, Vesin C, Tacchini-Cottier F, Senaldi G, Grau GE (2000) Delayed mortality and attenuated thrombocytopenia associated with severe malaria in urokinase-and urokinase receptor-deficient mice. Infect Immun 68:3822–3829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pino P et al (2003) Plasmodium falciparum-infected erythrocyte adhesion induces caspase activation and apoptosis in human endothelial cells. J Infect Dis 187:1283–1290

    Article  CAS  PubMed  Google Scholar 

  • Pino P, Taoufiq Z, Nitcheu J, Vouldoukis I, Mazier D (2005) Blood–brain barrier breakdown during cerebral malaria: suicide or murder? THROMBOSIS AND HAEMOSTASIS-STUTTGART- 94:336

  • Pino P et al (2004) Induction of the CD23/nitric oxide pathway in endothelial cells downregulates ICAM-1 expression and decreases cytoadherence of Plasmodium falciparum infected erythrocytes. Cell Microbiol 6:839–848

    Article  CAS  PubMed  Google Scholar 

  • Pongponratn E, Riganti M, Harinasuta T, Bunnag D (1985) Electron microscopy of the human brain in cerebral malaria. Southeast Asian J Trop Med Public Health 16:219–227

    CAS  PubMed  Google Scholar 

  • Ralph SA, Scheidig-Benatar C, Scherf A (2005) Antigenic variation in Plasmodium falciparum is associated with movement of var loci between subnuclear locations. Proc Natl Acad Sci U S A 102:5414–5419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis PA et al (2010) Cognitive dysfunction is sustained after rescue therapy in experimental cerebral malaria, and is reduced by additive antioxidant therapy. PLoS Pathog 6:e1000963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reis PA et al (2012) Statins decrease neuroinflammation and prevent cognitive impairment after cerebral malaria. PLoS Pathog 8:e1003099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockett KA, Awburn MM, Cowden WB, Clark IA (1991) Killing of Plasmodium falciparum in vitro by nitric oxide derivatives. Infect Immun 59:3280–3283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe JA, Claessens A, Corrigan RA, Arman M (2009) Adhesion of Plasmodium falciparum-infected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert Rev Mol Med 11:e16

    Article  PubMed  PubMed Central  Google Scholar 

  • Sattar MA, Hoque HW, Amin MR, Faiz MA, Rahman MR (2009) Neurological findings and outcome in adult cerebral malaria. Bangladesh Med Res Counc Bull 35:15–17

    Article  CAS  PubMed  Google Scholar 

  • Schindler SM, Little JP, Klegeris A (2014) Microparticles: a New perspective in central nervous system disorders. BioMed Res Int 2014:756327

    Article  PubMed  PubMed Central  Google Scholar 

  • Senczuk AM, Reeder JC, Kosmala MM, Ho M (2001) Plasmodium falciparum erythrocyte membrane protein 1 functions as a ligand for P-selectin. Blood 98:3132–3135

    Article  CAS  PubMed  Google Scholar 

  • Serirom S, Raharjo WH, Chotivanich K, Loareesuwan S, Kubes P, Ho M (2003) Anti-adhesive effect of nitric oxide on plasmodium falciparum cytoadherence under flow. Am J Pathol 162:1651–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith JD et al (1995) Switches in expression of plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82:101–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X-z et al (1995) The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of plasmodium falciparum-infected erythrocytes. Cell 82:89–100

    Article  CAS  PubMed  Google Scholar 

  • Susomboon P et al (2006) Down-regulation of tight junction mRNAs in human endothelial cells co-cultured with Plasmodium falciparum infected erythrocytes. Parasitol Int 55:107–112

    Article  CAS  PubMed  Google Scholar 

  • Toure FS et al (2008) Apoptosis: a potential triggering mechanism of neurological manifestation in Plasmodium falciparum malaria. Parasite Immunol 30:47–51

    CAS  PubMed  Google Scholar 

  • Turner GD et al (1994) An immunohistochemical study of the pathology of fatal malaria: evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol 145:1057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner GD et al (1998) Systemic endothelial activation occurs in both mild and severe malaria. Correlating dermal microvascular endothelial cell phenotype and soluble cell adhesion molecules with disease severity. Am J Pathol 152:1477

    CAS  PubMed  PubMed Central  Google Scholar 

  • van der Heyde HC, Nolan J, Combes V, Gramaglia I, Grau GE (2006) A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. Trends Parasitol 22:503–508

    Article  PubMed  CAS  Google Scholar 

  • van Hensbroek MB et al (1996) The effect of a monoclonal antibody to tumor necrosis factor on survival from childhood cerebral malaria. J Infect Dis 174:1091–1097

    Article  PubMed  Google Scholar 

  • Waller KL, Cooke BM, Nunomura W, Mohandas N, Coppel RL (1999) Mapping the binding domains involved in the interaction between the plasmodium falciparum knob-associated histidine-rich protein (KAHRP) and the cytoadherence ligand P. FalciparumErythrocyte membrane protein 1 (PfEMP1). J Biol Chem 274:23808–23813

    Article  CAS  PubMed  Google Scholar 

  • Warrell DA, Looareesuwan S, Warrell MJ, Kasemsarn P, Intaraprasert R, Bunnag D, Harinasuta T (1982) Dexamethasone proves deleterious in cerebral malaria: a double-blind trial in 100 comatose patients. N Engl J Med 306:313–319

    Article  CAS  PubMed  Google Scholar 

  • Wassmer SC, Combes V, Candal FJ, Juhan-Vague I, Grau GE (2006a) Platelets potentiate brain endothelial alterations induced by Plasmodium falciparum. Infect Immun 74:645–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wassmer SC, Lépolard C, Traoré B, Pouvelle B, Gysin J, Grau GE (2004) Platelets reorient Plasmodium falciparum-infected erythrocyte cytoadhesion to activated endothelial cells. J Infect Dis 189:180–189

    Article  CAS  PubMed  Google Scholar 

  • Wassmer SC, de Souza JB, Frère C, Candal FJ, Juhan-Vague I, Grau GE (2006b) TGF-beta-1 released from activated platelets can induce TNF-stimulated human brain endothelium apoptosis: a new mechanism for microvascular lesion during cerebral malaria. J Immunol 176:1180–1184

    Article  CAS  PubMed  Google Scholar 

  • Weatherall DJ, Miller LH, Baruch DI, Marsh K, Doumbo OK, Casals-Pascual C, Roberts DJ (2002) Malaria and the red cell ASH Education Program Book 2002:35–57

  • Weinberg JB, et al. (2014) Dimethylarginines: endogenous inhibitors of nitric oxide synthesis in children with falciparum malaria. J Infect Dis :jiu156

  • White NJ, Phillips RE, Looareesuwan S, Chanthavanich P, Warrell DA (1988) Single dose phenobarbitone prevents convulsions in cerebral malaria. Lancet 332:64–66

    Article  Google Scholar 

  • White VA, Lewallen S, Beare N, Kayira K, Carr RA, Taylor TE (2001) Correlation of retinal haemorrhages with brain haemorrhages in children dying of cerebral malaria in Malawi. Trans R Soc Trop Med Hyg 95:618–621

    Article  CAS  PubMed  Google Scholar 

  • World Health O (2000) Severe falciparum malaria. Trans R Soc Trop Med Hyg 94:1–90

    Article  Google Scholar 

  • Yeo TW et al (2008a) Recovery of endothelial function in severe falciparum malaria: relationship with improvement in plasma L-arginine and blood lactate concentrations. J Infect Dis 198:602–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo TW et al (2008b) Angiopoietin-2 is associated with decreased endothelial nitric oxide and poor clinical outcome in severe falciparum malaria. Proc Natl Acad Sci 105:17097–17102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanini GM, Cabrales P, Barkho W, Frangos JA, Carvalho L (2011) Exogenous nitric oxide decreases brain vascular inflammation, leakage and venular resistance during Plasmodium berghei ANKA infection in mice. J Neuroinflammation 8:66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Laboratories of Rachna Hora and Prakash Chandra Mishra are funded by Department of Biotechnology (DBT), Govt. of India, University Grants Commission (UGC, Govt. of India) and Department of Science and technology (DST, Govt. of India). Payal Kapoor is a DST INSPIRE (Department of Science and Technology - Innovation in Science Pursuit for Inspired Research) senior research fellow. Kirandeep Kaur Thind was initially funded by DBT and later supported by junior research fellowship from CSIR (Council of Scientific and Industrial Research), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachna Hora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hora, R., Kapoor, P., Thind, K.K. et al. Cerebral malaria – clinical manifestations and pathogenesis. Metab Brain Dis 31, 225–237 (2016). https://doi.org/10.1007/s11011-015-9787-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-015-9787-5

Keywords

Navigation