Skip to main content
Log in

Altered long- and short-range functional connectivity in the patients with end-stage renal disease: a resting-state functional MRI study

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

To investigate alterations of functional connectivity density (FCD) in patients with end-stage renal disease (ESRD) by using resting-state functional magnetic resonance imaging (rs-fMRI). Medical research ethics committee approval from Jinling hospital and written informed consent from each subject were obtained. Forty six patients with ESRD, consisting of 21 patients minimal nephrotic encephalopathy (MNE) and 25 non-nephro-encephalopathy (non-NE), as well as 23 healthy controls underwent rs-fMRI. Neuropsychological tests were performed in all subjects, while laboratory tests were performed in ESRD patients. A voxel-wise whole brain functional connectivity analysis was used to generate long- and short-range FCD maps. The maps among MNE, non-NE, and healthy controls groups were compared by using one-way analysis of variance tests. A multiple regression analysis was performed to evaluate the correlations between FCD and the variables of neuropsychological or laboratory tests. Compared with healthy controls, non-NE showed decreased long-range FCD mainly in parietal lobe. Moreover, MNE showed further decreased long-range FCD in bilateral middle prefrontal cortex (MPFC), anterior cingulate cortex (ACC) and right superior frontal gyrus. Meanwhile, non-NE showed decreased short-range FCD mainly in frontal cortex, and further reduction in bilateral ACC and right superior parietal gyrus in MNE. In addition, patients with ESRD mainly exhibited increased long-range FCD in left temporal lobe and caudate; and increased short-range FCD in bilateral orbitofrontal cortex and temporal gyri (P < 0.05, AlphaSim corrected). The number connection test type A score, serum creatinine, urea, and dialysis duration showed negative correlation with FCD in some brain regions, while the digital symbol test scores positively correlated with short-range FCD in left inferior parietal lobule (all P < 0.05, AlphaSim corrected). The prominent long- and short-range FCD reduction was found mainly in default mode network (DMN) and bilateral frontal and parietal lobes, while the progressively decreased long- and short-range FCD in ACC/MPFC and the long-range FCD in left superior frontal gyrus from non-NE to MNE was associated with cognition dysfunction in ESRD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ESRD:

End-stage renal disease

FCD:

Functional connectivity density

rs-fMRI:

Resting-state functional magnetic resonance imaging

DMN:

Default mode network

MNE:

Minimal nephro-encephalopathy

non-NE:

Patients without nephro-encephalopathy

HCs:

Healthy controls

BA:

Brodmann’s area

MNI:

Montreal neurological institute

TPO:

Temporal pole

SPG:

Superior parietal gyrus

IPL:

Inferior parietal lobule

PCu:

Precuneus

PCC:

Posterior cingulate cortex

ITG:

Inferior temporal gyrus

ORBsup:

Orbitofrontal cortex (superior)

ORBmid:

Orbitofrontal cortex (middle)

ACC:

Anterior cingulate cortex

SFGmed:

Superior frontal gyrus (medial)

MFG:

Middle frontal gyrus

SFG:

Superior frontal gyrus

STG:

Superior temporal gyrus

References

  • Anticevic A, Cole MW, Murray JD, Corlett PR, Wang XJ, Krystal JH (2012) The role of default network deactivation in cognition and disease. Trends Cogn Sci 16(12):584–592

    Article  PubMed Central  PubMed  Google Scholar 

  • Bajaj JS, Wade JB, Sanyal AJ (2009) Spectrum of neurocognitive impairment in cirrhosis: implications for the assessment of hepatic encephalopathy. Hepatology 50(6):2014–2021

    Article  PubMed  Google Scholar 

  • Beucke JC, Sepulcre J, Talukdar T, et al (2013) Abnormally high degree connectivity of the orbitofrontal cortex in obsessive-compulsive disorder. JAMA Psychiatry 70(6):619–629

    Article  PubMed  Google Scholar 

  • Brouns R, De Deyn PP (2004) Neurological complications in renal failure: a review. Clin Neurol Neurosurg 107(1):1–16

  • Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 33(3):279–296

    Article  PubMed  Google Scholar 

  • Buckner RL (2010) Human functional connectivity: new tools, unresolved questions. Proc Natl Acad Sci U S A 107(24):10769–10770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain's default network. Ann N Y Acad Sci 1124(1):1–38

  • Buckner RL, Sepulcre J, Talukdar T, et al (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29(6):1860–1873

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bugnicourt JM, Godefroy O, Chillon JM, Choukroun G, Massy ZA (2013) Cognitive disorders and dementia in CKD: the neglected kidney-brain axis. J Am Soc Nephrol 24(3):353–363

    Article  CAS  PubMed  Google Scholar 

  • Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  CAS  PubMed  Google Scholar 

  • Chao-Gan Y, Yu-Feng Z (2010) DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci 4:13

    PubMed Central  PubMed  Google Scholar 

  • Chen HJ, Zhu XQ, Shu H, et al (2012) Structural and functional cerebral impairments in cirrhotic patients with a history of overt hepatic encephalopathy. Eur J Radiol 81(10):2463–2469

    Article  PubMed  Google Scholar 

  • Fazekas G, Fazekas F, Schmidt R, et al (1996) Pattern of cerebral blood flow and cognition in patients undergoing chronic haemodialysis treatment. Nucl Med Commun 17(7):603–608

    Article  CAS  PubMed  Google Scholar 

  • Ferenci P, Lockwood A, Mullen K, Tarter R, Weissenborn K, Blei AT (2002) Hepatic encephalopathy–definition, nomenclature, diagnosis, and quantification: final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 35(3):716–721

    Article  PubMed  Google Scholar 

  • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102(27):9673–9678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Geissler A, Fründ R, Kohler S, Eichhorn HM, Krämer BK, Feuerbach S (1995) Cerebral metabolite patterns in dialysis patients: evaluation with H-1 MR spectroscopy. Radiology 194(3):693–697

    Article  CAS  PubMed  Google Scholar 

  • Giang LM, Weiner DE, Agganis BT, et al (2010) Cognitive function and dialysis adequacy: no clear relationship. Am J Nephrol 33(1):33–38

    Article  PubMed Central  PubMed  Google Scholar 

  • Grant I (2009) Neuropsychological assessment of neuropsychiatric and neuromedical disorders. Oxford University Press

  • Harciarek M, Williamson JB, Biedunkiewicz B, Lichodziejewska-Niemierko M, Dębska-Ślizień A, Rutkowski B, et al (2012) Risk factors for selective cognitive decline in dialyzed patients with end-stage renal disease: evidence from verbal fluency analysis. J Int Neuropsychol Soc 18(1):162–167

    Article  PubMed  Google Scholar 

  • Hirakata H, Yao H, Osato S, et al (1992) CBF and oxygen metabolism in hemodialysis patients: effects of anemia correction with recombinant human EPO. Am J Phys 262(5 Pt 2):F737–F743

    CAS  Google Scholar 

  • Kanai H, Hirakata H, Nakane H, et al (2001) Depressed cerebral oxygen metabolism in patients with chronic renal failure: a positron emission tomography study. Am J Kidney Dis 38(4 Suppl 1):S129–S133

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Wen JQ, Qi RF, et al (2014) Diffuse interstitial brain edema in patients with end-stage renal disease undergoing hemodialysis: a tract-based spatial statistics study. Medicine (Baltimore) 93(28):e313

    Article  Google Scholar 

  • Krishnan AV, Kiernan MC (2009) Neurological complications of chronic kidney disease. Nat Rev Neurol 5(10):542–551

    Article  CAS  PubMed  Google Scholar 

  • Kurella Tamura M, Yaffe K (2010) Dementia and cognitive impairment in ESRD: diagnostic and therapeutic strategies. Kidney Int 79(1):14–22

    Article  PubMed  Google Scholar 

  • Li C, Su HH, Qiu YW, et al (2014) Regional homogeneity changes in hemodialysis patients with end stage renal disease: in vivo resting-state functional MRI study. PLoS One 9(2):e87114

    Article  PubMed Central  PubMed  Google Scholar 

  • Liang X, Wen J, Ni L et al (2013) Altered pattern of spontaneous brain activity in the patients with end-stage renal disease: a resting-state functional MRI study with regional homogeneity analysis. PLoS One 8(8):e71507

  • McQuillan R, Jassal SV (2010) Neuropsychiatric complications of chronic kidney disease. Nat Rev Nephrol 6(8):471–479

    Article  PubMed  Google Scholar 

  • Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214(5–6):655–667

    Article  PubMed Central  PubMed  Google Scholar 

  • Murray AM, Knopman DS (2010) Cognitive impairment in CKD: no longer an occult burden. Am J Kidney Dis 56(4):615–618

    Article  PubMed Central  PubMed  Google Scholar 

  • Ni L, Wen J, Zhang LJ, et al (2014) Aberrant default-mode functional connectivity in patients with end-stage renal disease: a resting-state functional MR imaging study. Radiology 271(2):543–552

    Article  PubMed  Google Scholar 

  • Okada J, Yoshikawa K, Matsuo H, Kanno K, Oouchi M (1991) Reversible MRI and CT findings in uremic encephalopathy. Neuroradiology 33(6):524–526

    Article  CAS  PubMed  Google Scholar 

  • Pereira AA, Weiner DE, Scott T, Sarnak MJ (2005) Cognitive function in dialysis patients. Am J Kidney Dis 45(3):448–462

    Article  PubMed  Google Scholar 

  • Prohovnik I, Post J, Uribarri J, Lee H, Sandu O, Langhoff E (2007) Cerebrovascular effects of hemodialysis in chronic kidney disease. J Cereb Blood Flow Metab 27(11):1861–1869

    Article  CAS  PubMed  Google Scholar 

  • Qiu Y, Lv X, Su H, Jiang G, Li C, Tian J (2014) Structural and functional brain alterations in end stage renal disease patients on routine hemodialysis: a voxel-based morphometry and resting state functional connectivity study. PLoS One 9(5):e98346

    Article  PubMed Central  PubMed  Google Scholar 

  • Radić J, Ljutić D, Radić M, Kovaĉić V, Sain M, Curković KD (2010) The possible impact of dialysis modality on cognitive function in chronic dialysis patients. Neth J Med 68(4):153–157

    PubMed  Google Scholar 

  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98(2):676–682

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sepulcre J, Liu H, Talukdar T, Martincorena I, Yeo BT, Buckner RL (2010) The organization of local and distant functional connectivity in the human brain. PLoS Comput Biol 6(6):e1000808

  • Snyder AZ, Raichle ME (2012) A brief history of the resting state: the Washington University perspective. NeuroImage 62(2):902–910

    Article  PubMed Central  PubMed  Google Scholar 

  • Stufflebeam SM, Liu H, Sepulcre J, Tanaka N, Buckner RL, Madsen JR (2011) Localization of focal epileptic discharges using functional connectivity magnetic resonance imaging. J Neurosurg 114(6):1693–1697

    Article  PubMed Central  PubMed  Google Scholar 

  • Tullberg M, Fletcher E, DeCarli C, et al (2004) White matter lesions impair frontal lobe function regardless of their location. Neurology 63(2):246–253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang XJ, Xia MR, Lai YY, et al (2014) Disrupted resting-state functional connectivity in minimally treated chronic schizophrenia. Schizophr Res 156(2–3):150–156

    Article  PubMed  Google Scholar 

  • Whitfield-Gabrieli S, Ford JM (2012) Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol 8:49–76

    Article  PubMed  Google Scholar 

  • Williams MA, Sklar AH, Burright RG, Donovick PJ (2004) Temporal effects of dialysis on cognitive functioning in patients with ESRD. Am J Kidney Dis 43(4):705–711

    Article  PubMed  Google Scholar 

  • Zhang LJ, Wen J, Ni L, et al (2013) Predominant gray matter volume loss in patients with end-stage renal disease: a voxel-based morphometry study. Metab Brain Dis 28(4):647–654

    Article  PubMed  Google Scholar 

  • Zheng G, Wen J, Zhang L, et al (2014) Altered brain functional connectivity in hemodialysis patients with end-stage renal disease: a resting-state functional MR imaging study. Metab Brain Dis 29(3):777–786

    Article  CAS  PubMed  Google Scholar 

  • Zuo XN, Ehmke R, Mennes M, et al (2012) Network centrality in the human functional connectome. Cereb Cortex 22(8):1862–1875

    Article  PubMed  Google Scholar 

Download references

Author contributions

Xiao-Dong Zhang, Ji-Qiu Wen and Qiang Xu contributed equally to this work; Long-Jiang Zhang and Guang-Ming Lu designed the research; Xiao-Dong Zhang, Ji-Qiu Wen, Qiang Xu, Rong-Feng Qi, Hui-Juan Chen, Xiang Kong, Lu-De Wei, Min Xu, Long-Jiang Zhang, Guang-Ming Lu.

Grants

Grants from National Natural Science Foundation of China, Nos. 30700194, 81171313, 81322020 and 81230032 (to Zhang LJ); and Program for New Century Excellent Talents in University, No. NCET-12-0260 (to Zhang LJ).

Conflict of interest

There are no interest conflicts disclosed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Jiang Zhang or Guang Ming Lu.

Additional information

Xiao-Dong Zhang, Ji-Qiu Wen, and Qiang Xu had equal contribution to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The spatial distribution of long- and short-range FDC in HCs, non-NE and MNE groups. Long-range FCD mainly distributes in bilateral middle/superior frontal gyri, superior parietal gyri, medial prefrontal cortex, anterior cingulate cortex, precuneus/posterior cingulate cortex, postcentral gyrus, inferior parietal lobule, middle temporal gyri, and temporal pole. Short-range FCD mainly locates in bilateral precuneus/posterior cingulate cortex, inferior parietal lobule, middle frontal gyri, Calcarine, middle and superior occipital gyri, medial prefrontal cortex, anterior cingulate cortex, superior parietal gyri, Cuneus, and middle temporal gyri (P < 0.05, AlphaSim corrected). FCD functional connectivity density, HCs healthy control, Non-NE non-nephro-encephalopathy, MNE minimal nephro-encephalopathy. (GIF 91 kb)

High Resolution Image (TIFF 2632 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XD., Wen, JQ., Xu, Q. et al. Altered long- and short-range functional connectivity in the patients with end-stage renal disease: a resting-state functional MRI study. Metab Brain Dis 30, 1175–1186 (2015). https://doi.org/10.1007/s11011-015-9683-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-015-9683-z

Keywords

Navigation